DOI QR코드

DOI QR Code

Application of computer methods in music composition using smart nanobeams

  • Ying Shi (Art Foundation Teaching and Research Department, School of Arts and Design, Yanshan University Hebei) ;
  • Maryam Shokravi (Energy Institute of Higher Education, Mehrab High School) ;
  • X. Chen (School of Mechanical Engineering, Dubai Industrial Company)
  • Received : 2023.02.07
  • Accepted : 2024.09.12
  • Published : 2024.09.25

Abstract

The paper considers one of the new applications of computer methods in music composition, using smart nanobeams-an integration of advanced computational techniques with new, specially designed materials for enhanced performance capabilities in music composition. The research applies some peculiar properties of smart nanobeams, embedded with piezoelectric materials that modulate and control sound vibrations in real-time. The study is conducted to determine the effects of changes in the length, thickness of nanobeams and the applied voltage on acoustical properties and the tone quality of musical instruments with the help of numerical simulations and optimization algorithms. By means of piezo-elasticity theory, different governing equations of nanobeam systems can be derived, which are solved by the numerical method to predict the dynamic behavior of the system under different conditions. Results show that manipulation of the parameters allows great control over pitch, timbre, and resonance of the instrument; such a system offers new ways in which composers and performers can create music. This research also validates the computational model against available theoretical data, proving the accuracy and possible applications of the former. The work thus marks a large step towards the intersection of music composition with smart material technology, and, when further developed, it would mean that smart nanobeams could revolutionize the process for composing and performing music on these instruments.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 891238/28.

References

  1. Allahyari, S.M.R., Shokravi, M. and Murmy, T.T. (2024), "Modeling of truncated nanocompositeconical shell structures for dynamic stability response", Struct. Eng. Mech., 91(3), 325-334, https://doi.org/10.12989/sem.2024.91.3.325.
  2. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://doi.org/10.12989/anr.2019.7.5.351.
  3. Bakhshandeh Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mat., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  4. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  5. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concr, 18(6), 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053.
  6. Daikh, A.A., Drai, A., Houari, M.S.A., Eltaher, M.A.J.S. and Structures, C. (2023), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Adv. Nano Res., 36(6), 643-656. http://doi.org/10.12989/anr.2020.36.6.643.
  7. Dong, D.T., Nam, V.H., Trung, N.T., Phuong, N.T. and Hung, V.T. (2020), "Nonlinear thermomechanical buckling of sandwich FGM oblique stiffened plates with nonlinear effect of elastic foundation", J. Thermoplast. Compos. Mater., 0892705720935957. https://doi.org/10.1177/0892705720935957.
  8. Farrokhian, A. (2023), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Adv. Nano Res., 35(1), 1-12. http://doi.org/10.12989/anr.2020.35.1.001.
  9. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  10. Hirane, H., Belarbi, M.-O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
  11. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  12. Nguyen, T.P., Nguyen-Thoi, T., Tran, D.K., Ho, D.T. and Vu, H.N. (2020), "Nonlinear vibration of full-filled fluid corrugated sandwich functionally graded cylindrical shells", J. Vib. Control., 27(9-10), 1020-1035. https://doi.org/10.1177/1077546320936537.
  13. Ninh, D.G., Tien, N.D., Hoang, V.N.V. and Bich, D.H. (2020), "Vibration of cylindrical shells made of three layers W-Cu composite containing heavy water using Flugge-Lur'e-Bryrne theory", Thin Wall. Struct., 146, 106414. https://doi.org/10.1016/j.tws.2019.106414.
  14. Kolahchi, R., Moniri Bidgoli, A.M. and Heydari, M,M. (2015a), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014, http://doi.org/10.12989/sem.2015.55.5.1001.
  15. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015b), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  16. Kolahchi, R., Hosseini, H. and Esmailpour, M., (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186, https://doi.org/10.1016/j.compstruct.2016.08.032.
  17. Kolahchi, R., Safari, M. and Esmailpour, M., (2016b),"Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  18. Lu, Q., Liu, S., Mao, W., Yu, Y. and Long, X. (2024), "A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale", Comput. Geotech., 169, 106175. https://doi.org/10.1016/j.compgeo.2024.106175
  19. Li, X., Liu, Y., Ge, L. and Zhang, Z. (2024), "A large-stroke reluctance-actuated nanopositioner: Compliant compensator for enhanced linearity and precision motion control", IEEE/ASME Transact Mechatr., 29(4), 2947-2955. https://doi.org/10.1109/TMECH.2024.3405195
  20. Liu, Z., Tang, Q., Ouyang, F., Long, T. and Liu, S. (2024), "Profiling students' learning engagement in MOOC discussions to identify learning achievement: An automated configurational approach", Comput. Educ., 219, 105109. https://doi.org/10.1016/j.compedu.2024.105109
  21. Motezaker, M., Jamali, M. and Kolahchi, R. (2021a), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory, Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625
  22. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021b), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118
  23. Topkaya, T. and Solmaz, M. (2018), "Investigation of low velocity impact behaviors of honeycomb sandwich composites", J. Mech. Sci. Technol. 32 3161-3167. https://doi.org/10.1007/s12206-018-0619-5.
  24. Torres-Jimenez, J. and Rodriguez-Cristerna, A. (2017), "Metaheuristic post-optimization of the NIST repository of covering arrays", CAAI Trans. Intell. Technol., 2, 31-38. https://doi.org/10.1016/j.trit.2016.12.006
  25. Wen, Q., He, J., Guan, Sh., Chen, T., Hu, Y., Wu, W., Liu, F., Qiao, Y. (2017), "The TripleSat constellation: A new geospatial data service model", Geo-spatial Inform. Sci., 20, 163-173 https://doi.org/10.1080/10095020.2017.1329266
  26. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017a), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mat., 1099636217743288. https://doi.org/10.1177/1099636217743288.
  27. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017b), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009.
  28. Zhao, B., Gao, L., Liao, W. and Zhang, B. (2017), "A new kernel method for hyperspectral image feature extraction", Geo-spatial Inform. Sci., 20, 309-318. https://doi.org/10.1080/10095020.2017.1403088
  29. Zhao, Y., Xing, H., Zhang, L., Huang, H., Sun, D., Dong, X. and Wang, J. (2023), "Development of phase-field modeling in materials science in China: A review", Acta Metallurgica Sinica, 36(11), 1749-1775. https://doi.org/10.1007/s40195-023-01593-w
  30. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Clean. Prod., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390