Microstructural, Dielectric and Electrical Properties of (Pb,La,Ce)TiO₃ Ceramics for High Frequency Ceramic Resonator as a function of MnO₂ Addition Ju Hyun Yoo, Dong On Oh, and Chang Yub Park Department of Electrical Engineering, Semyung University, Jechon, Chungbuk 390-711, Korea #### Ji Hong Kim Department of Electronic Engineering, Semyung University, Jechon, Chungbuk 390-711, Korea ## Sung Ill Lee Department of safety Engineering, Chungju University, Chungju, Chungbuk 380-762, Korea # Sung Lim Ryu Department of materials Science and Engineering, Chungju University, Chungju, Chungbuk 380-762, Korea E-mail: juhyun57@semyung.ac.kr (Received 17 June 2002, Accepted 8 August 2002) In this study, microstructural, dielectric and electrical properties of $(Pb_{0.83})$ ($La_{0.2}Ce_{0.8})_{0.08}TiO_3(PCT)$ ceramics as a function of MnO_2 addition and electrode size variation were investigated for 30 MHz high frequency ceramic resonator application. Grain size was gradually increased according to the increase of MnO_2 addition amount. Moreover, the density showed a constant value with increasing MnO_2 addition amount. Dielectric constant was decreased with increasing MnO_2 addition amount. Curie temperature of all the composition ceramics was nearly constant around 330 °C. The maximum D.R.of 50.5 dB and maximum Q_{mt3} of 1842 in the 3rd overtone vibration mode were appeared at the composition of 0.3wt% MnO_2 , respectively. Keywords: 30 MHz high frequency ceramic resonator, Grain size, dynamic range (D.R.) ## 1. INTRODUCTION In comparison with quartz resonators, recently, ceramic ones with the merits of low cost and high rising time for oscillation have been widely utilized. And also, in order to increase the speed of hard disk drive (HDD) and floppy disk drive (FDD), the operating frequency of oscillator or resonator generating clock is necessary to be higher. However. In order to increase operating frequency of resonator, 3rd overtone thickness vibration mode must be utilized in the high frequency resonators because the devices using fundamental mode thickness vibration for high frequency have the difficult problems such as lapping and polishing in diminishing its thickness [1,2]. As far as the composition ceramics used for resonator using 3rd overtone mode thickness vibration are concerned, the dynamic range (D.R.) represented as the decibel ratio of resonant impedance to anti resonant impedance must be higher to induce a stable thickness Based on the facts, PbLa(Ti,Mn)O₃ ceramics[3], which had been reported as the composition ceramics with high mechanical quality factor and higher dynamic range, have been widely used for high frequency resonators. However, the dynamic ranges of 3rd overtone thickness vibration mode between deficient PbO composition and excess PbO one may accompany the remarkable differences because of PbO evaporation through the manufacturing process. Moreover, in the high frequency resonators more than 20 MHz, the resonator with large porosity show a decreased mechanical quality factor and D.R.because of an absorption and dispersion of acoustic wave through the large pore. To make high frequency ceramic resonators, PbTiO₃ ceramic materials are better than PZT material because the mechanical Q_{mt} is larger and the dielectric constant is smaller[4]. Also, PbTiO₃ materials are more suitable for making 3rd overtone mode resonators rather than fundamental mode ones because it is theoretically impossible to make fundamental frequencies using a trapped mode. In this study, the (Pb,La)TiO₃ system ceramic substituted to (Ce) was manufactured with the variations of MnO₂ addition amount in order to increase mechanical quality factor. Electrical, dielectric and structural characteristics were analyzed for the manufactured piezoelectric ceramics to investigate 30 MHz high frequency resonator application. #### 1. EXPERIMENTAL Compositions of 0.25 wt% CuO added $(Pb_{0.83})$ $(La_{0.2}Ce_{0.8})_{0.08}TiO_3(PCT)$ with different amount of MnO_2 were produced from the raw material oxides via conventional mixed oxide process. High purity oxide powders more than 99% were mixed up in the ball mill for 24 h. The resulting slurry was then dried and mixture was calcined at 900°C for 4h. The calcined powder was again ball-milled in acetone. After drying and mixing with PVA solution, the powders were uniaxially pressed at 3 ton/cm² into disks 30 mm in diameter. After burning out the binder, the disks were sintered at 1200°C for 2h in air. The sintered disks were lapped to thickness of 0.255 mm and then electroded. The SMD type ceramic resonators with the size of 3.7× 3.1× 0.255 mm were fabricated from the disc as shown Fig.1. The microstructure was investigated by scanning electron microscopy and the grain size was measured from the SEM micrographs using linear intercept method. Poling treatments of the specimen were performed by 70 kV/cm for 10 min in a 120 °C silicon oil bath. Electrical and piezoelectric properties of the specimens that underwent poling treatment were determined by resonance method using frequency data obtained using a network analyzer (HP4294A). Fig. 1. Dimension and structure of SMD type ceramic resonator. ## 2. RESULTS AND DISCUSSION Figure 2 shows X-ray Diffraction Patterns of the specimens with different MnO₂ compositions. As can be seen from Table1 and Fig.2, the crystal structure of the materials was identified as tetragonal. The tetragonality showed smaller values from 1.033 to 1.036, than that of pure PbTiO₃. As MnO₂ addition was more than 0.7wt%, tetragonality was increased. For the increase of tetragonality, additional investigations are necessary. And also, as MnO₂ addition amount is more than 0.5wt%. Unknown phase was apparently appeared. It is perhaps considered that excess MnO₂ addition make second phase with 0.25wt% added CuO. Figure 3 shows microstructure of the specimens sintered at 1200 $^{\circ}$ C as a function of MnO₂ addition. The Fig. 2. X-ray diffraction patterns with MnO₂ addition. Fig. 3. Microstructures with MnO_2 addition. average grain size of specimen with no impurity was 1.406 μ m. However, as the MnO₂ addition amount is increased, the grain growth occurred. As shown in Table 1, the density showed a constant value with increasing MnO₂ addition amount. Table 2 (a) and Fig 4 shows D.R. and mechanical quality factor(Q_{mt3}) in the 3^{rd} overtone vibration mode as a function of MnO₂ addition and electrode size variation. The maximum D.R.of the 3^{rd} overtone Table 1. Physical properties of sample with MnO₂ addition. | MnO ₂
[wt%] | Dielectric constant | Density
[g/cm³] | Tc[℃] | Grain size
[μm] | Tetragonality
(c/a) | |---------------------------|---------------------|--------------------|-------|--------------------|------------------------| | 0 | 350 | 7.58 | 331 | 1.406 | 1.0337 | | 0.3 | 245 | 7.56 | 332 | 1.424 | 1.0337 | | 0.5 | 231 | 7.54 | 335 | 1.444 | 1.0338 | | 0.7 | 230 | 7.53 | 331 | 1.538 | 1.0338 | | 0.9 | 231 | 7.56 | 325 | 1.759 | 1.0347 | | 1.1 | 235 | 7.54 | 331 | 1.957 | 1.0364 | Fig. 4. Dynamic range(D.R.) and mechanical quality factor(Q_{mt3}) as a function of MnO₂ addition at electrode radius size 0.77mm. vibration mode was appeared as 50.5 dB at the composition of 0.3wt% MnO₂ addition amount. The maximum Q_{mt3} of 1842 was also obtained at the composition of 0.3 wt % addition amount. Thereafter, it was decreased with increasing MnO_2 addition amount. This is due to the facts that Mn^{2+} and Mn^{3+} could be substituted to Ti^{4+} ion position with ion radius of 0.68Å at the composition of 0.3wt% MnO_2 addition. Then, holes are generated since Mn^{2+} and Mn^{3+} ions act as acceptor dopants and as a result, carrier concentration increases, leading to a increase in mechanical quality factor, $Q_{mt}[5,6]$. At the composition ceramics more than 0.3wt% MnO_2 addition amount, D.R. and mechanical quality factor(Q_{mt3}) in the 3^{rd} overtone vibration mode were decreased because of increasing second phase. At the composition of 0.3wt% MnO₂, D.R. and Q_{mt3} with the change in electrode radius size are shown in Fig.5 and Table 2 (b). Sample with electrode radius size of 0.77mm showed the highest D.R. and Q_{mt3} values by decreased resonant resistance. When the electrode radius size is 0.77mm, the vibration energy is focused on the electrode part while it is extremely damping in the outer non-electrode part. That is, an energy-trapping effect in Fig. 5. Dynamic range(D.R₃) and mechanical quality factor(Q_{mt3}) as a function of electrode radius size at the 0.3wt% MnO₂ addition Table 2. Resonant and piezoelectric characteristics as a function of MnO₂ addition and electrode radius size variation. (a) MnO₂ addition (b) electrode radius size variation | MnQ
[wt%] | f
[MHz] | f _a
[MHz] | Z,
[Ω] | Z _a
[Ω] | D.R
[dB] | Q _{mt3} | k _{t3} | electrode rad
size[mm] | ius f
[MHz] | f _a
[MHz] | Ζ,
[Ω] | Z_{a} [Ω] | D.R
[dB] | Q _{mt3} | k ₁₃ | |--------------|------------|-------------------------|-----------|-----------------------|-------------|------------------|-----------------|---------------------------|----------------|-------------------------|-----------|----------------------|-------------|------------------|-----------------| | 0 | 29.79 | 29.91 | 343 | 6300 | 25.36 | 291 | 0.099 | 0.68 | 30.09 | 30.27 | 137 | 13117 | 39.66 | 1057 | 0.120 | | 0.3 | 30.06 | 30.24 | 52 | 17443 | 50.48 | 1842 | 0.120 | 0.71 | 30.06 | 30.24 | 124 | 9922 | 37.86 | 1015 | 0.120 | | 0.5 | 29.91 | 30.06 | 120 | 13600 | 40.48 | 1068 | 0.110 | 0.74 | 30.06 | 30.24 | 108 | 9683 | 37.41 | 1030 | 0.120 | | 0.7 | 30.06 | 30.22 | 140 | 24430 | 44.35 | 848 | 0.113 | 0.77 | 30.06 | 30.24 | 52 | 17443 | 50.48 | 1842 | 0.120 | | 0.9 | 29.92 | 30.08 | 210 | 8926 | 32.76 | 609 | 0.113 | 0.8 | 30.08 | 30.26 | 59 | 12630 | 47.12 | 1774 | 0.120 | | 1.1 | 29.44 | 29.5 | 313 | 3466 | 20.85 | 938 | 0.070 | (a) Fundamental vibration mode Fig. 6. Impedance curves of fundamental and 3rd overtone thickness vibration mode at 0.77mm electrode radius size with 0.3wt% MnO₂. the 3rd overtone vibration mode was strongly generated at that electrode radius size. Figure 6 shows impedance curves of fundamental and 3^{rd} overtone thickness vibration mode at 0.77mm electrode radius size at 0.3wt% MnO₂ addition composition. Energy trapping effect in the fundamental vibration mode was not appeared because of smaller Poisson's ratio less than 0.3. ## 4. CONCLUSION The structural, piezoelectric and dynamic range characteristics of modified PbTiO₃ ceramics were investigated as a function of MnO₂ addition. Grain size was gradually increased according to the increase of MnO₂ addition amount. Moreover, the density showed a constant value with increasing MnO₂ addition amount. Dielectric constant was decreased with increasing MnO₂ addition amount. Curie temperature of all the composition ceramics was nearly constant around 330 °C. The maximum D.R. of 50.5 dB and maximum Q_{mt3} of 1842 in the 3rd overtone vibration mode were appeared at the composition of 0.3wt% MnO₂, respectively. ### **ACKNOWLEDGMENTS** This work was supported by Electrical Engineering& Science Research Institute (Grant, No 01-030). #### REFERENCES - [1] D. O. Oh, S. K. Min, K. H. Yoon, J. H. Yoo, and C. Y. Park, "Microstructural properties of (Pb)(La,Ce)TiO₃ ceramics as a function of MnO2 addition", Proc. 2001 Autumn Conf. KIEMME, p. 442, 2001. - [2] S. K. Min, J. H. Yoo, C. Y. Park, and H. S. Yoon, "Effect of CuO on the microstructural and electrical properties of (Pb)(La,Nd)TiO₃ ceramics", Proc. 2001 Autumn Conf. KIEMME, p. 446, 2001. - [3] S. Ikegami, I. Ueda, and T. Nagata, "Electromechanical properties of PbTiO₃ ceramics containing La and Mn", J. Acous. Soci.. Am., Vol. 50, No. 4, p. 1060, 1971. - [4] J. H. Yoo, J. I. Hong, and S. J. Suh, "Effect of MnO₂ impurity on the PbTiO₃ system ceramics for power supply", Sensors & Actuators, Vol. 78, No. 2, p. 168, 1999 - [5] S. K Min, D. U. Oh, K. H. Yoon, J. H. Yoo, C. Y. Park, and J. S. Kim, "Resonant characteristics as the variations of L/T ratio of Pb (La,Ce)TiO₃ system ceramics", J. of KIEEME(in Korean), Vol. 14, No. 9, p. 720, 2001. - [6] Y. Yamashita, S. Sakano, and I. Toba, "TE harmonic overtone mode energy-trapped ceramic filter with narrow frequency tolerance", Jpn. J. Appl. Phys., Vol. 36, p. 6096, 1977.