• Title/Summary/Keyword: dynamic learning rate

Search Result 95, Processing Time 0.028 seconds

A Prediction of Shear Behavior of the Weathered Mudstone Soil Using Dynamic Neural Network (동적신경망을 이용한 이암풍화토의 전단거동예측)

  • 김영수;정성관;김기영;김병탁;이상웅;정대웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.123-132
    • /
    • 2002
  • The purpose of this study is to predict the shear behavior of the weathered mudstone soil using dynamic neural network which mimics the biological system of human brain. SNN and RNN, which are kinds of the dynamic neural network realizing continuously a pattern recognition as time goes by, are used to predict a nonlinear behavior of soil. After analysis, parameters which have an effect on learning and predicting of neural network, the teaming rate, momentum constant and the optimum neural network model are decided to be 0.5, 0.7, 8$\times$18$\times$2 in SU model and 0.3, 0.9, 8$\times$24$\times$2 in R model. The results of appling both networks showed that both networks predicted the shear behavior of soil in normally consolidated state well, but RNN model which is effective fir input data of irregular patterns predicted more efficiently than SNN model in case of the prediction in overconsolidated state.

인조신경망을 이용한 좌심실보조장치의 동적 모델링

  • 김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.346-350
    • /
    • 1996
  • This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.

  • PDF

Fashion Clothing Image Classification Deep Learning (패션 의류 영상 분류 딥러닝)

  • Shin, Seong-Yoon;Wang, Guangxing;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.676-677
    • /
    • 2022
  • In this paper, we propose a new method based on a deep learning model with an optimized dynamic decay learning rate and improved model structure to achieve fast and accurate classification of fashion clothing images. Experiments are performed using the model proposed in the Fashion-MNIST dataset and compared with methods of CNN, LeNet, LSTM and BiLSTM.

  • PDF

Dynamic tracking control of robot manipulators using vision system (비전 시스템을 이용한 로봇 머니퓰레이터의 동력학 추적 제어)

  • 한웅기;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1816-1819
    • /
    • 1997
  • Using the vision system, robotic tasks in unstructured environments can be accompished, which reduces greatly the cost and steup time for the robotic system to fit to he well-defined and structured working environments. This paper proposes a dynamic control scheme for robot manipulator with eye-in-hand camera configuration. To perfom the tasks defined in the image plane, the camera motion Jacobian (image Jacobian) matrix is used to transform the camera motion to the objection position change. In addition, the dynamic learning controller is designed to improve the tracking performance of robotic system. the proposed control scheme is implemented for tasks of tracking moving objects and shown to outperform the conventional visual servo system in convergence and robustness to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Android Botnet Detection Using Hybrid Analysis

  • Mamoona Arhsad;Ahmad Karim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.704-719
    • /
    • 2024
  • Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.

Dynamic Resource Adjustment Operator Based on Autoscaling for Improving Distributed Training Job Performance on Kubernetes (쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터)

  • Jeong, Jinwon;Yu, Heonchang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.205-216
    • /
    • 2022
  • One of the many tools used for distributed deep learning training is Kubeflow, which runs on Kubernetes, a container orchestration tool. TensorFlow jobs can be managed using the existing operator provided by Kubeflow. However, when considering the distributed deep learning training jobs based on the parameter server architecture, the scheduling policy used by the existing operator does not consider the task affinity of the distributed training job and does not provide the ability to dynamically allocate or release resources. This can lead to long job completion time and low resource utilization rate. Therefore, in this paper we proposes a new operator that efficiently schedules distributed deep learning training jobs to minimize the job completion time and increase resource utilization rate. We implemented the new operator by modifying the existing operator and conducted experiments to evaluate its performance. The experiment results showed that our scheduling policy improved the average job completion time reduction rate of up to 84% and average CPU utilization increase rate of up to 92%.

A Study on Residents' Participation in Rural Tourism Project Using an Agent-Based Model - Based on the Theory of Planned Behavior - (행위자 기반 모형을 활용한 농촌관광 사업 주민 참여 연구 - 계획된 행동 이론을 바탕으로 -)

  • Ahn, Seunghyeok;Yun, Sun-Jin
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.2
    • /
    • pp.77-89
    • /
    • 2021
  • To predict the level of residents' participation in rural tourism project, we used agent-based model. The decision-making mechanism which calculates the utility related to attitude, subjective norm, perceived behavioral control of planned behavior theory was applied to the residents' decision to participate. As a result of the simulation over a period of 20 years, in the baseline scenario set similar to the general process of promoting rural projects, the proportion of indigenous people decreased and the participation rate decreased. In the scenarios with different learning frequencies in perceived behavioral control, overall participation rate decreased. Learning every five years had the effect of increasing the participation rate slightly. Participation rates increased significantly in the scenario that consider economic aspects and reputation in attitude and did not decline in the scenario where population composition was maintained. The virtuous cycle effect of subjective norm according to changes in participation rate due to influence of attitude and perceived behavioral control shows the dynamic relationship.

Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping (Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델)

  • Kwon, Hyuck Tae;Lee, Suk Kyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.143-150
    • /
    • 2015
  • As smart devices get popular, research on gesture recognition using their embedded-accelerometer draw attention. As Dynamic Time Warping(DTW), recently, has been used to perform gesture recognition on data sequence from accelerometer, in this paper we propose Feature-Strengthened Gesture Recognition(FsGr) Model which can improve the recognition success rate when DTW is used. FsGr model defines feature-strengthened parts of data sequences to similar gestures which might produce unsuccessful recognition, and performs additional DTW on them to improve the recognition rate. In training phase, FsGr model identifies sets of similar gestures, and analyze features of gestures per each set. During recognition phase, it makes additional recognition attempt based on the result of feature analysis to improve the recognition success rate, when the result of first recognition attempt belongs to a set of similar gestures. We present the performance result of FsGr model, by experimenting the recognition of lower case alphabets.

The Adaptive Congestion Control Using Neural Network in ATM network (ATM 망에서 뉴럴 네트워크를 이용한 적응 폭주제어)

  • Lee, Yong-Il;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.134-138
    • /
    • 1998
  • Because of the statistical fluctuations and the high 'time-variability' nature of the traffic, managing the resources of the network require highly dynamic techniques with minimal Intervention and reaction times, and adaptive and learning capabilities. The neural networks normalizes the ATM cell arrival rate and queue length and has the adaptive learning algorithm, and experimentally investigated the method to prevent the congestion generated in ATM networks.

  • PDF

개폐식 밸브를 이용한 공압실린더의 위치제어

  • 홍지중;이정오;홍예선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.380-384
    • /
    • 1992
  • The position control of a pneumatic cylinder suing low cost on-off valves is studied. The valve control band(VCB) was proposed toget fast response and toprevent solenoid valves from unnecessary switching at the beginning of response. A learning algorithm was used to compensate the nonlinearity and complexity in mathematical modelling of pheumatic on-off controlled positioning systems. In this algorithm, the desired performance index and modified learning rate, were proposed to improvespeed and convergence of learning control. It is shown experimentally that the proposed algorithm is robust to changes of system parameters: the setting time less than 1.0 sec and the error bound of .+-. 0.1 mm can be obtained. The effects of supply pressure, size of switching valves and the effect of multiple valves are discussed, and computer simulation onthe dynamic performances of the pneumatic system is also presented.