• Title/Summary/Keyword: dynamic equilibrium equation

Search Result 102, Processing Time 0.026 seconds

A Study on Reversal Stability of Hydraulic Excavator for Crane Work (유압 굴삭기의 크레인 작업시 전도 안정성에 관한 연구)

  • Um, Hyuk;Choi, Jong-Hwan;Kim, Seung-Soo;Yang, Soon-Yong;Lee, Jin-Gul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.64-72
    • /
    • 2004
  • In this paper, the dynamic stability of a hydraulic excavator using ZMP concept is considered. When a load is moved in an excavator based on automation, an excavator often loses the stability and falls over. This is because a dynamic element is not included in the moment equilibrium equation that is used in order to judge a reversal. Consequently, reversal distinction algorithm including all a static and a dynamic element along a load movement in crane work is necessary. Zero Moment Point(ZMP) is a point on the floor where the resultant moment of the gravity, the inertial force of the manipulator and the external force is zero. This study is going to interpret the reversal stability of the excavator to which is applied ZMP concept through simulation.

Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW (동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Shape Finding of Cable-Net Structures by Using Modified Dynamic Relaxation Method (변형된 동적이완법을 이용한 케이블-네트 구조물의 형상해석)

  • 하창우;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.51-58
    • /
    • 2000
  • Dynamic relaxation method is a shape finding analysis method for flexible structures by introducing the dynamic equilibrium equation. However, it is difficult for shape finding to estimate the most appropriate values for the mass and damping on each shape because the values are random one. In this study, the unit mass, the unit damping and the principal direction stiffness are utilized to avoid the random values, and the Newmarks assumption is introduced during the dynamic analysis. By introducing variant time increment method presented, the convergence time is reduced, that is, it can be reduced the total times for analysis.

  • PDF

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Equilibrium Point and Stability of Double-Free-Nodes Space Truss Under Symmetric Condition (대칭 조건을 갖는 2-자유절점 공간 트러스의 평형점과 안정성)

  • Ha, Junhong;Shon, Sudeok;Lee, Seungjae;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.69-76
    • /
    • 2019
  • A stadium roof that uses the pin-jointed spatial truss system has to be designed by taking into account the unstable phenomenon due to the geometrical non-linearity of the long span. This phenomenon is mainly studied in the single-free-node model (SFN) or double-free-node model (DFN). Unlike the simple SFN model, the more complex DFN model has a higher order of characteristic equations, making analysis of the system's stability complicated. However, various symmetric conditions can allow limited analysis of these problems. Thus, this research looks at the stability of the DFN model which is assumed to be symmetric in shape, and its load and equilibrium state. Its governing system is expressed by nonlinear differential equations to show the double Duffing effect. To investigate the dynamic behavior and characteristics, we normalize the system of the model in terms of space and time. The equilibrium points of the system unloaded or symmetrically loaded are calculated exactly. Furthermore, the stability of these points via the roots of the characteristic equation of a Jacobian matrix are classified.

Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate (수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발)

  • 성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Transient Response of The Optimal Taper-Flat Head Slider in Magnetic Storage Devices

  • Arayavongkul, R.;Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.990-994
    • /
    • 2004
  • This paper presents a method to predict the transient characteristic of the air lubricated slider head in a hard disk drive by using optimization technique. The time dependent modified Reynolds equation based on the molecular slip flow approximation equations was used to describe the fluid flow within the air bearing and the implicit finite difference scheme is applied to calculate the pressure distribution under the slider head. The exhaustive search combined with the Broyden-Fletcher-Goldfarb-Shanno method were employed to obtain optimum design variables which are taper angle, rail width and taper length in order to keep the forces and moments acting on the slider head in dynamic equilibrium. The results show that the optimal head slider of the magnetic head has good stability characteristic that can reach the steady state within 0.5 microsecond.

  • PDF

A study on the uniform metal droplet generation using Laser (레이저를 이용한 균일 금속 액적 생성에 관한 연구)

  • 박성민;양영수;김용욱
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • This paper presents a study of the uniform metal droplet generation using laser. The theoretical model, based on the variational principle instead of solving the Wavier-Stokes equation with moving boundaries, is developed. Our model is considered the Young-Laplace equation and force equilibrium conditions. Surface tension coefficient is determined under the statical condition with induced differential equation by using experimental result. In case of dynamic vibration, metal droplet shape and critical detaching volume are predicted by recalculating of proposed model. The simulation result revealed that the developed model could reasonably describe the molten metal droplet behavior on vibration with metal wire.

  • PDF

Free Vibration Analysis of Beam-Columns on Elastic Foundation Using Differential Quadrature Method (DQM을 이용한 탄성지반 위에 놓인 보-기둥의 자유진동 해석)

  • 최규문;김무영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1005-1009
    • /
    • 2001
  • This paper deals with the free vibration analysis of beam-columns on elastic foundation using Differential Quadrature Method. Based on the dynamic equilibrium equation of a beam element acting the stress resultants and the inertia force, the governing differential equation is derived for the in-plane free vibration of such beam-columns. For calculating the natural frequencies, this equation is solved by the Differential Quadrature Method. It is expected that the results obtained herein can be used in application of Differential Quadrature Method to the field of civil engineering and practically in the structural engineering, the foundation engineering and the vibration control fields.

  • PDF