• Title/Summary/Keyword: dynamic conditions

Search Result 3,924, Processing Time 0.027 seconds

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

SUFFICIENT OSCILLATION CONDITIONS FOR DYNAMIC EQUATIONS WITH NONMONOTONE DELAYS

  • OCALAN, OZKAN;KILIC, NURTEN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.843-856
    • /
    • 2022
  • In this article, we analyze the first order delay dynamic equations with several nonmonotone arguments. Also, we present new oscillation conditions involving lim sup and lim inf for the solutions of these equations. Finally, we give an example to demonstrate the results.

Linearization of Nonlinear Control Systems using a Restricted Class of Dynamic Feedback (비선형 시스템의 제한된 dynamic feedback 을 사용한 선형화)

  • 이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.47-56
    • /
    • 1994
  • The dynamic feedback is well-known to be much more powerful tool in control than the static one. This paper deals with the dynamic feedback linearization of the nonlinear systems which are not (static) feedback linearizable. The dynamic feedback linearization problem is however too difficult to solve at momemt. Thus we introduce a restricted class of the dynamic feedback (pure integrators followed by the static feedback) which is often used to study the problems using dynamic feedback and obtain the necessary and sufficient conditions of the linearization problem using this class of the dynamic feedback.

  • PDF

Comparison of the Effects of Barefoot, Kinesio Tape, and Dynamic Tape on Static and Dynamic Balance in Subjects With Asymptomatic Flexible

  • Lim, One-bin;Park, So-yeon
    • Physical Therapy Korea
    • /
    • v.27 no.1
    • /
    • pp.78-86
    • /
    • 2020
  • Background: Flat-footed persons with collapsed medial longitudinal arch lose flexibility after skeletal maturity, resulting in several deformities and soft tissue injuries. Although arch support taping is usually applied in the clinic to support the collapsed arch, research on the use of different types of tape for more efficient arch support in flat-footed persons is lacking. Objects: The purpose of this study was to examine three conditions (barefoot, kinesio tape, and dynamic tape) and compare their effects on static and dynamic balance in persons with asymptomatic flexible flatfoot. Methods: Twenty-two subjects (9 females and 13 males) with asymptomatic flexible flatfoot participated in this study. The subjects performed the Y-balance test to measure the composite reach score. The subjects also performed a 30-second standing test to measure the center of pressure (COP) path length and a walking test to measure anteroposterior and lateral variability using the Zebris FDM system. One-way repeated-measures analysis of variance compared the three conditions applied to the subjects' feet for each balance variable. Results: The composite reach score significantly increased following the application of dynamic tape compared with barefoot and that of kinesio tape compared with barefoot. There was no significant difference in the COP path length during standing among the three conditions. Anteroposterior and lateral variability during walking significantly with dynamic tape application compared with barefoot. Conclusion: The results of this study suggest that, in persons with asymptomatic flexible flatfoot, application of kinesio tape and dynamic tape may be effective in increasing the composite reach score in Y-balance test, whereas application of dynamic tape may be effective in reducing anteroposterior and lateral variability during walking.

Dynamic Behavior of Vacuum Circuit Breaker with Permanent Magnetic Actuator (영구자석형 조작기를 갖는 진공차단기의 동적거동)

  • Yu, Lyun;Kim, Young-Geun;Lee, Sung-Ho;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.578-585
    • /
    • 2007
  • A vacuum circuit breaker (VCB) with permanent magnet actuator (PMA) has been studied in this study. Electromagnetic field analysis and dynamic simulations have been carried out for optimal design of VCB by using commercial software Maxwell and ADAMS. This simulation model can be an effective method for the VCB, which has non-linear output force of PMA, friction, and impact for operations. An experiment has been conducted to evaluate correctness of the simulated model. By using this evaluated model, the displacement and velocity characteristics of the VCB have been simulated with following conditions : (1) The different output forces of PMA have been applied, (2) The friction conditions in follow lever shaft and moving part have been changed, (3) The mass conditions of moving part have been changed. The simulated results shows that the velocity characteristics are mainly determined by the output force of PMA. The effects due to the changes of friction conditions against the dynamic characteristics was small, and the mass conditions of the moving parts affect the velocity and a bouncing phenomenon of VCB. From these results, the optimal design conditions for the VCB have been derived.

Synthesis Problems of the Nonlinear Systems Via Dynamic Feedback (비선형 시스템의 Dynamic Feedback을 이용한 합성)

  • 이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.19-26
    • /
    • 1991
  • In this paper, we give a structure algorithm for the synthesis problems of the nonlinear system via dynamic feedback. Using our algorithm, sufficient conditions for the input-output synthesis problems are discussed. The problems we consider in this paper include dynamic input-output decoupling input-output linearization, and immersion into a linear system.

  • PDF

Robust stabilization of nonlinear uncertain systems without matching conditions (정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.