• Title/Summary/Keyword: dust, extinction

Search Result 114, Processing Time 0.025 seconds

IRAS OBSERVATIONS OF DARK GLOBULES

  • Lee, H.M.;Hong, S.S.;Kwon, S.M.
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.55-70
    • /
    • 1991
  • Infrared emission maps are constructed at 12.5, 25, 60, and $100{\mu}m$ for dark globules B5, B34, B133, B134, B361, L134 and L1523 by using Infrared Astronomical Satellite data base. These clouds are selected on the basis of their appearance in Palomar print as dark obscuring objects with angular sizes in the range of 3 to 30 arcminutes. The short wavelength(12.5 and $25{\mu}m$) maps show the embedded infrared sources. We found many such sources only in B5, B361 and B34 regions, Diffuse component at 12.5 and $25{\mu}m$, possibly arising from the stochastically heated very small dust grains(a < $0.01{\mu}m$) by interstellar radiation field, is found in B361 and L1523 regions. Such emission is characterized by the limb brightening, and it is confirmed in L1523 and in B361. Infrared emissions at the long wavelengths(60 and $100{\mu}m$) are due to colder dusts with temperature less than 20 K. The distribution of color index determined by the ratio 60 to $100{\mu}m$ intensities shows monotonic decrease of dust temperature toward the center. The black body temperature determined from these ratios is found to lie between 16 and 23 K. Such temperature is possible for small(i.e., $a\;{\lesssim}\;0.01{\mu}m$) graphite grains if the grains are mainly heated by interstellar radiation field. Thus IRAS 100 and $60{\mu}m$ emissions are arising mainly from small grains in the colud. The distribution of such dust grains implied from the emissivity distributions at 100 and $60{\mu}m$ resembles that of isothermal sphere. This contrasts to earlier findings of much steeper distribution of dusts contributing visible extinction. These dust grains are mainly larger ones(i.e., $a{\simeq}0.1{\mu}m$). Therefore we conclude that the average grain size increase, toward the cloud center.

  • PDF

PROPERTIES OF THE VARIATION OF THE INFRARED EMISSION OF OH/IR STARS II. THE L BAND LIGHT CURVES

  • Kwon, Young-Joo;Suh, Kyung-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.4
    • /
    • pp.123-133
    • /
    • 2010
  • In order to study properties of the pulsation in the infrared emission for long period variables, we collect and analyze the infrared observational data at L band for 12 OH/IR. The observation data cover about three decades including recent data from the ISO and Spitzer. We use the Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with results of previous investigations at infrared and radio bands. We obtain the relationship between the pulsation periods and the amplitudes at L band. Contrary to the results at K band, there is no difference of the trends in the short and long period regions of the period-luminosity relation at L band. This may be due to the molecular absorption effect at K band. The correlations among the L band parameters, IRAS [12-25] colors, and K band parameters may be explained as results of the dust shell parameters affected by the stellar pulsation. The large scatter of the correlation could be due to the existence of a distribution of central stars with various masses and pulsation modes.

SPECTRAL EVOLUTION OF NOVAE IN THE NEAR-INFRARED BASED ON AKARI OBSERVATIONS

  • Sakon, Itsuki;Onaka, Takashi;Usui, Fumihiko;Shimamoto, Sayaka;Ohsawa, Ryou;Wada, Takehiko;Matsuhara, Hideo;Arai, Akira
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.101-103
    • /
    • 2017
  • We have carried out the near-infrared spectroscopic observations of recent classical novae (e.g., V2468Cyg, V1280Sco) within a few years from the outburst with AKARI as a part of AKARI Open Time Observing Program for Phase 3-II "Spectral Evolution of Novae in the Near-Infrared based on AKARI Observations (Proposal ID: SENNA)". The homogeneous datasets of near-infrared spectra from $2.5{\mu}m$ to $5{\mu}m$ with AKARI/IRC collected in this program are useful to infer the physical conditions of the shell formed by the ejected materials, to examine the chemical properties of the ejecta gas, and to examine the properties of dust formed in the nova ejecta.

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.353-356
    • /
    • 2012
  • We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.

A SURVEY OF INTERSTELLAR LINES: RADIAL VELOCITY PROFILES AND EQUIVALENT WIDTHS

  • GALAZUTDINOV GAZINUR
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.215-218
    • /
    • 2005
  • An atlas of high resolution (${\lambda}/{\Delta}{\lambda}$=45,000) profiles of interstellar atomic lines of K I (7665, 7699 ${\AA}$), Na I (D 1, D2), Ca II (H, K), Ca I (4227 ${\AA}$), molecular structures of CH, CH+, CN and the major diffuse interstellar bands at 5780 and 5797 ${\AA}$ based on ${\~}$300 echelle spectra of ${\~}$200 OB stars is presented. Relationships between the reddenings, distances and equivalent widths of NaI, CaII, KI, CH, CH+, CN and diffuse bands are discussed. The equivalent width of K I (7699 ${\AA}$) as well as of CH4300 ${\AA}$ / correlate very tightly with E(B- V) in contrast to the features of neutral sodium, ionized calcium and the molecular ion CH+. The equivalent widths of the Hand K lines of Call grow with distance at a rate ${\~}$250m${\AA}$ per 1 kpc. A similar relation for NaI is much less tight. The strengths of neutral potassium lines, molecular features and diffuse interstellar bands do not correlate practically with distance. These facts suggest that ionized calcium fills the interstellar space quite homogeneously while the other carriers mentioned above, especially K I, CH and these of diffuse bands occupy more and more compact volumes, also filled with dust grains. Apparently the carriers of narrow diffuse bands are spatially correlated with simple molecules and dust grains - all abundant in the so-called 'zeta' type clouds. The same environment seems to be hostile to the carriers of broad diffuse interstellar bands (DIEs) (like 5780 or 6284) and -to a certain extent - also to CaII, NaI and CH+.

AKARI SPECTROSCOPY OF QUASARS AT 2.5 - 5 MICRON

  • Im, Myungshin;Jun, Hyunsung;Kim, Dohyeong;Lee, Hyung Mok;Ohyama, Youichi;Kim, Ji Hoon;Nakagawa, Takao;QSONG Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.163-167
    • /
    • 2017
  • Utilizing a unique capability of AKARI that allows deep spectroscopy at $2.5-5.0{\mu}m$, we performed a spectroscopy study of more than 200 quasars through one of the AKARI mission programs, QSONG (Quasar Spectroscopic Observation with NIR Grism). QSONG targeted 155 high redshift (3.3 < z < 6.42) quasars and 90 low redshift active galactic nuclei (0.002 < z < 0.48). In order to provide black hole mass estimates based on the rest-frame optical spectra, the high redshift part of QSONG is designed to detect the $H{\alpha}$ line and the rest-frame optical spectra of quasars at z > 3.3. The low redshift part of QSONG is geared to uncover the rest-frame $2.5-5.0{\mu}m$ spectral features of active galactic nuclei to gain useful information such as the dust-extinction-free black hole mass estimators based on the Brackett lines and the temperatures of the hot dust torus. We outline the program strategy, and present some of the scientific highlights from QSONG, including the detection of the $H{\alpha}$ line from a quasar at z > 4.5 which indicates a rigorous growth of black holes in the early universe, and the $Br{\beta}$-based black hole mass estimators and the hot dust temperatures (~ 1100 K) of low redshift AGNs.

MONTE-CARLO RADIATIVE TRANSFER MODEL OF THE DIFFUSE GALACTIC LIGHT

  • Seon, Kwang-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calculated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the generally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r < 0.5 kpc from the Earth. On the other hand, the DGL measured in the Galactic plane is mostly due to stars at a distance range that corresponds to an optical depth of $${\sim_\sim}$$ 1 measured from the Earth. Therefore, the low-latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of $r{\leq}0.5$ kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of $1{\leq}r{\leq}2kpc$. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Far-ultraviolet Observations of the Taurus-Perseus-Auriga Complex

  • Lim, Tae-Ho;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([154,180], [-28, -2]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It shows strong absorption in FUV toward the dense Taurus cloud while it does not in California cloud. It turned out that it is related to the relative location of each cloud and Perseus OB2 association. We also present some results of dust scattering simulation based on Monte Carlo Radiative Transfer technique (MCRT). Through this dust scattering simulation, we have derived the scattering parameter for this region, albedo(a)=$0.42^{+0.05}{_{-0.05}}$, asymmetry factor(g)=$0.47^{+0.11}{_{-0.27}}$. The optical parameters we obtained seem reasonable compared to the theoretical model values ~0.40 and ~0.65 for the albedo and the phase function though the phase function is rather small. Using the result of simulation, we figured out the geometries of each cloud in the complex region, especially their distances and thicknesses. Our predictions from the results are in good agreement with the previous studies related to the TPA complex. For example, the Taurus cloud is within ~200pc from the Sun and the Perseus seems to be multi-layered, at least two. The California cloud is more distant than the other cloud on average at ~350 pc and Auriga cloud seems to be between the Taurus cloud and the eastern end of the California cloud. We figured out that across the TPA complex region, there might be some correlation between the LSR velocity and the distance to each cloud in the complex.

  • PDF

Seasonal and Yearly Variations of Atmospheric Extinction Coefficient at Campus Station of Chungbuk National University Observatory from 2005 to 2007 (충북대학교 천문대 교내관측소에서 측정된 2005년부터 2007년까지의 대기소광계수의 계절별, 년도별 변화)

  • Kim, Chun-Hwey;Cha, Sang-Mok;Choi, Young-Jae;Song, Mi-Hwa;Park, Jang-Ho;Won, Jang-Hee;Yim, Jin-Sun;Cho, Myung-Shin;Park, Eun-Mi;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • Systematic CCD observations of times of minimum lights for eclipsing binaries has been carried out from 2002 to 2007 at Campus Station of Chungbuk National University Observatory which is located in Cheongju city, Korea. As a by-product of our observations, photometric data for stars in CCD images taken from 2005 to 2007 were used to determine 1st order atmospheric extinction coefficient (hereafter AEC) and seasonal and yearly variations of the AECs were studied. Total nights used for determination of AECs were 57 days in 2005, 51 days in 2006, and 63 days in 2007. As a result the annual mean value of the AECs per air mass is calculated as $0.^m34{\pm}0.^m18$ for 2005, $0.^m38{\pm}0.^m19$ for 2006, and $0.^m45{\pm}0.^m20$ for 2007. These values show that the AECs and their standard deviations are two and four times, respectively, larger than those of normal observatories which are not located near large cities. Annual comparison between concentration of atmospheric fine dust and coefficient of atmospheric extinction show strong correlation between two quantities of which time variations show similar patterns. The AECs for the east sky show larger than those for the west sky. It can be easily understood by the reasonable possibility that air pollutants remain more in the east sky than in the west because the east area of Cheongju city has been more developed than the west one. In conclusion the atmospheric extinction of the night sky of Cheongju city has an annual trend of increase of $0.^m06\;airrnass^{-1}\; year^{-1}$ implying that it may take only about 13 years for Cheongju city to have 2 times brighter night sky than the present one. Our study highlights that variations of AEC can be used as an important indicator of air pollution to monitor night skies.