DOI QR코드

DOI QR Code

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y. (Graduate School of Science, Nagoya University)
  • Received : 2012.03.14
  • Accepted : 2012.07.27
  • Published : 2012.09.16

Abstract

We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.

Keywords

References

  1. Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al., 2006, A Low Level of Extragalactic Background Light as Revealed by ${\gamma}$-rays from Blazars, Nature, 440, 1018 https://doi.org/10.1038/nature04680
  2. Aumann, H. H., Fowler, J. W., & Melnyk, M., 1990, A Maximum Correlation Method for Image Construction of IRAS Survey Data, AJ, 99, 1674 https://doi.org/10.1086/115448
  3. Bernstein, R. A., 2007, The Optical Extragalactic Background Light: Revisions and Further Comments, ApJ, 666, 663 https://doi.org/10.1086/519824
  4. Bernstein, R. A., Freedman, W. L., & Madore, B. F., 2002, The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000 A. I. Results, ApJ, 571, 56 https://doi.org/10.1086/339422
  5. Girardi, L., Groenewegen, M. A. T., Hatziminaoglou, E., & da Costa, L., 2005, Star Counts in the Galaxy. Simulating from Very Deep to Very Shallow Photometric Surveys with the TRILEGAL Code, A&A, 436, 895 https://doi.org/10.1051/0004-6361:20042352
  6. Gordon, K. D., Witt, A. N., & Friedmann, B. C., 1998, Detection of Extended Red Emission in the Diffuse Interstellar Medium, ApJ, 498, 522 https://doi.org/10.1086/305571
  7. Hanner, M. S., Weinberg, J. L., Deshields, L. M., II, Green, B. A., & Toller, G. N., 1974, Zodiacal Light and the Asteroid Belt: The View from Pioneer 10, J. Geophys. Res., 79, 3671 https://doi.org/10.1029/JA079i025p03671
  8. Høg, E., Fabricius, C., Makarov, V. V., et al., 2000, The Tycho-2 Catalogue of the 2.5 Million Brightest Stars, A&A, 355, L27
  9. Lagache, G., Haffner, L. M., Reynolds, R. J., & Tufte, S. L., 2000, Evidence for Dust Emission in the Warm Ionised Medium Sing WHAM Data, A&A, 354, 247
  10. Lasker, B. M., Lattanzi, M. G., McLean, B. J., et al., 2008, The Second-Generation Guide Star Catalog: Description and Properties, AJ, 136, 735 https://doi.org/10.1088/0004-6256/136/2/735
  11. Leinert, C., Bowyer, S., Haikala, L. K., et al., 1998, The 1997 Reference of Diffuse Night Sky Brightness, A&AS, 127, 1 https://doi.org/10.1051/aas:1998105
  12. Madau, P. & Pozzetti, L., 2000, Deep Galaxy Counts, Extragalactic Background Light and the Stellar Baryon Budget, MNRAS, 312, L9 https://doi.org/10.1046/j.1365-8711.2000.03268.x
  13. Matsuoka, Y., 2012, Co-evolution of Galaxies and Central Black Holes: Observational Evidence on the Trigger of AGN Feedback, ApJ, 750, 54 https://doi.org/10.1088/0004-637X/750/1/54
  14. Matsuoka, Y. & Kawara, K., 2010, Witnessing the Active Assembly Phase of Massive Galaxies Since z = 1, MNRAS, 405, 100
  15. Matsuoka, Y., Kawara, K., & Oyabu, S., 2008, Low- Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines, ApJ, 673, 62 https://doi.org/10.1086/524193
  16. Matsuoka, Y., Ienaka, N., Kawara, K., & Oyabu, S., 2011a, Cosmic Optical Background: The View from Pioneer 10/11, ApJ, 736, 119 https://doi.org/10.1088/0004-637X/736/2/119
  17. Matsuoka, Y., Masaki, S., Kawara, K., & Sugiyama, N., 2011b, Halo Occupation Distribution of Massive Galaxies Since z = 1, MNRAS, 410, 548 https://doi.org/10.1111/j.1365-2966.2010.17464.x
  18. Matsuoka, Y., Oyabu, S., Tsuzuki, Y., & Kawara, K., 2007, Observations of O I and Ca II Emission Lines in Quasars: Implications for the Site of Fe II Line Emission, ApJ, 663, 781 https://doi.org/10.1086/518399
  19. Schlegel, D. J., Finkbeiner, D. P., & Davis, M., 1998, Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, ApJ, 500, 525 https://doi.org/10.1086/305772
  20. Totani, T., Yoshii, Y., Iwamuro, F., Maihara, T., & Motohara, K., 2001, Diffuse Extragalactic Background Light Versus Deep Galaxy Counts in the Subaru Deep Field: Missing Light in the Universe?, ApJ, 550, L137 https://doi.org/10.1086/319646
  21. Weinberg, J. L., Hanner, M. S., Beeson, D. E., Deshields, L. M., II, & Green, B. A., 1974, Background Starlight Observed from Pioneer 10, J. Geophys. Res., 79, 3665 https://doi.org/10.1029/JA079i025p03665