DOI QR코드

DOI QR Code

AKARI SPECTROSCOPY OF QUASARS AT 2.5 - 5 MICRON

  • Im, Myungshin (CEOU/Astronomy Program, Department of Physics & Astronomy) ;
  • Jun, Hyunsung (CEOU/Astronomy Program, Department of Physics & Astronomy) ;
  • Kim, Dohyeong (CEOU/Astronomy Program, Department of Physics & Astronomy) ;
  • Lee, Hyung Mok (CEOU/Astronomy Program, Department of Physics & Astronomy) ;
  • Ohyama, Youichi (Academia Sinica, Institute of Astronomy & Astrophysics) ;
  • Kim, Ji Hoon (CEOU/Astronomy Program, Department of Physics & Astronomy) ;
  • Nakagawa, Takao (Institute of Space and Astronautical Science, JAXA) ;
  • QSONG Team
  • Received : 2016.02.20
  • Accepted : 2016.10.15
  • Published : 2017.03.31

Abstract

Utilizing a unique capability of AKARI that allows deep spectroscopy at $2.5-5.0{\mu}m$, we performed a spectroscopy study of more than 200 quasars through one of the AKARI mission programs, QSONG (Quasar Spectroscopic Observation with NIR Grism). QSONG targeted 155 high redshift (3.3 < z < 6.42) quasars and 90 low redshift active galactic nuclei (0.002 < z < 0.48). In order to provide black hole mass estimates based on the rest-frame optical spectra, the high redshift part of QSONG is designed to detect the $H{\alpha}$ line and the rest-frame optical spectra of quasars at z > 3.3. The low redshift part of QSONG is geared to uncover the rest-frame $2.5-5.0{\mu}m$ spectral features of active galactic nuclei to gain useful information such as the dust-extinction-free black hole mass estimators based on the Brackett lines and the temperatures of the hot dust torus. We outline the program strategy, and present some of the scientific highlights from QSONG, including the detection of the $H{\alpha}$ line from a quasar at z > 4.5 which indicates a rigorous growth of black holes in the early universe, and the $Br{\beta}$-based black hole mass estimators and the hot dust temperatures (~ 1100 K) of low redshift AGNs.

Keywords

References

  1. Im, M., Lee, I., Cho, Y., et al., 2007, Seoul National University Bright Quasar Survey in Optical (SNUQSO). II. Discovery of 40 Bright Quasars Near the Galactic Plane, ApJ, 664, 64 https://doi.org/10.1086/518734
  2. Jiang, L., Fan, X., Brandt, W. N., et al., 2010, Dust-free quasars in the early Universe, Nature, 464, 380 https://doi.org/10.1038/nature08877
  3. Jun, H. D., Im, M., Lee, H. M., et al., 2015, Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars, ApJ, 806, 109 https://doi.org/10.1088/0004-637X/806/1/109
  4. Jun, H. D. & Im, M., 2013, Physical Properties of Luminous Dust-poor Quasars, ApJ, 779, 104 https://doi.org/10.1088/0004-637X/779/2/104
  5. Kim, D., Im, M., Kim, J. H., et al., 2015, The AKARI $2.5-5.0{\mu}m$ Spectral Atlas of Type-1 Active Galactic Nuclei: Black Hole Mass Estimator, Line Ratio, and Hot Dust Temperature, ApJS, 216, 17 https://doi.org/10.1088/0067-0049/216/1/17
  6. Kim, J., Im, M., Lee, H. M., et al., 2012, The $3.3{\mu}m$ Poly-cyclic Aromatic Hydrocarbon Emission as a Star Formation Rate Indicator, ApJ, 760, 120 https://doi.org/10.1088/0004-637X/760/2/120
  7. Lee, I., Im, M., Kim, M., et al., 2008, Seoul National University Bright Quasar Survey in Optical (SNUQSO). I. First Phase Observations and Results, ApJS, 175, 116 https://doi.org/10.1086/523043
  8. Mortlock, D. J., Warren, S. J., Venemans, B. P., et al., 2011, A luminous quasar at a redshift of z = 7:085, Nature, 474, 616 https://doi.org/10.1038/nature10159
  9. Natarajan, P., 2014, Seeds to monsters: tracing the growth of black holes in the universe, Gen. Rel. and Grav., 46, 1702 https://doi.org/10.1007/s10714-014-1702-6
  10. Netzer, H., Lira, P., Trakhtenbrot, B., Schemmer, O., & Cury, I., 2007, Black Hole Mass and Growth Rate at High Redshift, ApJ, 671, 1256 https://doi.org/10.1086/523035
  11. Onaka, T., Matsuhara, H., Wada, T., et al., 2007,The Infrared Camera (IRC) for AKARI - Design and Imaging Performance, PASJ, 59S, 401
  12. Oyabu, S., et al., 2014, in this proceedings
  13. Oyabu, S., Wada, T., Ohyama, Y., et al., 2007, Detection of an $H{\alpha}$ Emission Line on a Quasar, RX J1759.4+6638, at z = 4:3 with AKARI, PASJ, 59, 497 https://doi.org/10.1093/pasj/59.sp2.S497
  14. Sedgwick, C., Serjeant, S., Pearson, C., et al., 2013, Detection of $H{\alpha}$ emission from z > 3:5 submillimetre luminous galaxies with AKARI-FUHYU spectroscopy, MNRAS, 436, 395 https://doi.org/10.1093/mnras/stt1572
  15. Shen, Y., Greene, J. E., Strauss, M. A., et al., 2008, Biases in Virial Black Hole Masses: An SDSS Perspective, ApJ, 680, 169 https://doi.org/10.1086/587475
  16. Storrie-Lombardi, L. J., McMahon, R. G., Irwin, M. J., & Hazard, C., 1996, APM Z ${\geq}$ 4 QSO Survey: Spectra and Intervening Absorption Systems, ApJ, 468, 121 https://doi.org/10.1086/177676
  17. Yamada, R., Oyabu, S., Kaneda, H., et al., A Relation of the PAH $3.3{\mu}m$ Feature with Star-forming Activity for Galaxies with a Wide Range of Infrared Luminosity, 2013, PASJ, 65, 103 https://doi.org/10.1093/pasj/65.5.103