• Title/Summary/Keyword: dual curing

Search Result 59, Processing Time 0.032 seconds

Value Engineering Approach for Heat Curing Method Under Cold Weather Condition (한중콘크리트 보온양생 공법에 대한 VE분석)

  • Woo, Dae-Hun;Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.21-23
    • /
    • 2010
  • This study was conducted to draw various decisive elements of a reasonable heat curing method and to examine the importance in deciding a construction method when constructing cold weather concrete. As a result, the items proposed as important elements at the time of decision of a heat curing method included economy, workability, maintainability, insulation capability, reduced construction period and usability. As a result of importance by items under AHP technique, it was found the most important element was insulation capability, followed by reduced construction period and workability. As a result of comparison of a heat supplying and a heat insulation method by dual bubble sheet differed 2 times as much as a heat supplying method, especially the evaluation degree by insulation capability and reduced construction period was high.

  • PDF

Polymerization of dual cured composites by different thickness (두께에 따른 이중 중합형 복합레진의 중합)

  • Kim, Yun-Ju;Jin, Myoung-Uk;Kim, Sung-Kyo;Kwon, Tae-Yub;Kim, Young-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test. Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at $37{\circ}C$ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with ${\alpha}$= 0.05. The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

Polymerization of dual cured composites by different thickness (두께에 따른 이중 중합형 복합레진의 중합)

  • Kim, Yun-Ju;Jin, Myoung-Uk;Kim, Sung-Kyo;Kwon, Tae-Yub;Kim, Young-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.169-176
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test. Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at $37^{\circ}C$ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with ${\alpha}=0.05$. The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

  • PDF

The effects of total-etch, wet-bonding, and light-curing of adhesive on the apical seal of a resin-based root canal filling system (접착제의 접착변수가 레진계 근관충전제의 근단밀폐효과에 미치는 영향)

  • Ryu, Won-Il;Shon, Won-Jun;Baek, Seung-Ho;Lee, In-Han;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.385-396
    • /
    • 2011
  • Objectives: This study evaluated the effects of adhesion variables such as the priming concepts of canal wall and the curing modes of adhesives on the sealing ability of a resin-based root canal filling system. Materials and Methods: Apical microleakage of the Resilon-RealSeal systems filled with 3 different combinations of adhesion variables was compared with the conventional gutta-percha filling using a dye penetration method. Experimental groups were SEDC, Resilon (Resilon Research LLC) filling with self-etch RealSeal (SybronEndo) primer and dual-cure RealSeal sealer; NELC, Resilon filling with no etching, Scotchbond Multi-Purpose (3M ESPE) primer application and light-curing adhesive; and TELC, Resilon filling with Scotchbond Multi-Purpose primer and adhesive used under total etch / wet bonding and lightcure protocols. GPCS, gutta-percha filling with conventional AH26 plus sealer, was the control group. Results: The median longitudinal dye penetration length of TELC was significantly shorter than those of GPCS and SEDC (Kruskal-Wallis test, p < 0.05). In the cross-sectional microleakage scores, TELC showed significant differences from other groups at 2 to 5 mm from the apical foramen (Kruskal-Wallis test, p < 0.05). Conclusions: When a resin-based root canal filling material was used, compared to the self-etching primer and the dual-cure sealer, the total etch/wet-bonding with primer and light-curing of adhesive showed improved apical sealing and was highly recommended.

Influence of Thickness on the Degree of Cure of Composite Resin Core Material (코어용 레진의 두께가 중합에 미치는 영향)

  • Kwon, Pyoung-Cheol;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.352-358
    • /
    • 2006
  • The purpose of this study was to investigate the influence of thickness on the degree of cure of dual-cured composite core. 2, 4, 6, 8 mm thickness Luxacore Dual and Luxacore Self (DMG Inc, Hamburg, Germany) core composites were cured by bulk or incremental filling with halogen curing unit or self-cure mode The specimens were stored at $37^{\circ}C$ for 24 hours and the Knoop's hardness of top and bottom surfaces were measured. The statistical analysis was performed using ANOVA and Tukey's test at p = 0.05 significance level. In self cure mode, polymerization is not affected by the thickness. In Luxacore dual, polymerization of the bottom surface was effective in 2, 4 and 6 (incremental) mm specimens. However the 6 (bulk) and 8 (bulk, incremental) mm filling groups showed lower bottom/top hardness ratio (p < 0.05). Within the limitation of this experiment, incremental filling is better than bulk filling in case of over 4 mm depth, and bulk filling should be avoided.

Effect of Photoinitiator System on Mechanical Properties and Water Sorption Behavior of Urethane Acrylate/MMT Nanocomposite by UV Radiation Curing (UV 경화형 우레탄 아크릴레이트/MMT 나노복합체의 기계적 성질과 내흡수성에 대한 광개시제의 영향)

  • Kim, Ho-Gyum;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.256-260
    • /
    • 2015
  • The addition of montmorillonite (MMT) in the UV curable polyurethane diacrylate based resins was investigated to fabricate nanocomposites with improved mechanical properties and water sorption behavior using different photoinitiator systems. As a result, it was observed that 1 wt% of clay loading fairly improved tensile resistance and water uptake behavior. It can be also confirmed that dual photoinitiator system consisted of benzyldimethyl ketal and bisacyl phosphine oxide exhibited enhanced energy absorption band 340~450 nm even with 3 wt% of MMT concentration, which may affect the curing behavior of nanocomposite especially in our UV lamp system.

Surface and Dielectric Properties of Oriental Lacquer Films Modified by UV-Curable Silicone Acrylate

  • Hong, Jin-Who;Kim, Hyun-Kyoung
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.617-623
    • /
    • 2006
  • In order to achieve an oriental lacquer (OL) film with a thick consistency, UV-curable silicone acrylate (SA) was added to OL by a dual curing process. The addition of 5 wt% UV-curable SA to the OL fomulation enabled the preparation via a single drying step of a $77{\mu}m-thick$ film exhibiting excellent surface properties. FTIR-ATR was used to investigate the effect of UV-curable SA on the behavior of film formation during curing, and the relaxation behavior of the produced films was investigated by dielectric spectroscopy. Dielectric properties were measured in the frequency range $10^{-2}-10^5\;Hz$ at various temperatures between -100 and $200^{\circ}C$. The results demonstrated that OL modified by UV-curable SA has a higher glass transition temperature and stronger secondary relaxation at a lower temperature than the conventional OL system. The OL film modified with UV-curable SA was presumed to be harder at the surface and tougher than conventional OL film.

THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION (중합조건에 따른 dual cured resin cement의 열분석적 연구)

  • Lee, In-Bog;Chung, Kwan-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Effect of the difference in spectral outputs of the single and dual-peak LEDs on the microhardness and the color stability of resin composites (Single-peak LED와 dual-peak LED의 출력 파장 차이가 복합 레진 미세 경도와 색 안정성에 미치는 영향)

  • Park, Hye-Jung;Son, Sung-Ae;Hur, Bock;Kim, Hyeon-Cheol;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • Objectives: To determine the effect of the spectral output of single and dual-peak light emitting diode (LED) curing lights on the microhardness and color stability of commercial resin composites formulated with camphorquinone and alternative photoinitiators in combination. Materials and Methods: Three light-polymerized resin composites (Z100 (3M ESPE), Tetric Ceram (Ivoclar Vivadent) and Aelite LS Posterior (Bisco)) with different photoinitiator systems were used. The resin composites were packed into a Teflon mold (8 mm diameter and 2 mm thickness) on a cover glass. After packing the composites, they were light cured with single-peak and dual-peak LEDs. The Knoop microhardness (KHN) and color difference (${\Delta}E$) for 30 days were measured. The data was analyzed statistically using a student's t-test (p < 0.05). Results: All resin composites showed improved microhardness when a third-generation dual-peak LED light was used. The color stability was also higher for all resin composites with dual-peak LEDs. However, there was a significant difference only for Aelite LS Posterior. Conclusions: The dual-peak LEDs have a beneficial effect on the microhardness and color stability of resin composites formulated with a combination of camphorquinone and alternative photoinitiators.