DOI QR코드

DOI QR Code

Effect of Photoinitiator System on Mechanical Properties and Water Sorption Behavior of Urethane Acrylate/MMT Nanocomposite by UV Radiation Curing

UV 경화형 우레탄 아크릴레이트/MMT 나노복합체의 기계적 성질과 내흡수성에 대한 광개시제의 영향

  • Kim, Ho-Gyum (Department of Polymer Science, Kyungpook National University) ;
  • Min, Kyung-Eun (Department of Polymer Science, Kyungpook National University)
  • 김호겸 (경북대학교 고분자공학과) ;
  • 민경은 (경북대학교 고분자공학과)
  • Received : 2014.06.16
  • Accepted : 2014.08.17
  • Published : 2015.03.25

Abstract

The addition of montmorillonite (MMT) in the UV curable polyurethane diacrylate based resins was investigated to fabricate nanocomposites with improved mechanical properties and water sorption behavior using different photoinitiator systems. As a result, it was observed that 1 wt% of clay loading fairly improved tensile resistance and water uptake behavior. It can be also confirmed that dual photoinitiator system consisted of benzyldimethyl ketal and bisacyl phosphine oxide exhibited enhanced energy absorption band 340~450 nm even with 3 wt% of MMT concentration, which may affect the curing behavior of nanocomposite especially in our UV lamp system.

우레탄 아크릴레이트에 montmorillonite(MMT)를 첨가한 UV 경화형 나노복합체 제조 시 사용하는 광개시제의 종류에 따른 기계적 성질 및 내흡수성을 조사하였다. 1 wt%의 MMT가 첨가될 경우 가장 우수한 인장강도와 내흡수성을 나타내었으며, 광개시제의 경우 기존의 benzyldimethylketal 계열 광개시제와 bisacyl phosphine oxide 계열의 광개시제를 함께 사용할 경우 3 wt%의 MMT 함량에서도 사용된 UV 램프의 방출 파장대인 340~450 nm에서의 광흡수가 강화되어 나노복합체의 경화거동에 보다 효과적인 것으로 확인되었다.

Keywords

References

  1. S. C. Park, H. G. Kim, and K. E. Min, Polymer(Korea), 37, 100 (2012).
  2. M. Darroudi, M. Ahmad, K. Shameli, A. Abdullah, and N. Ibrahim, Sol. Stat. Sci., 11, 1621 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.016
  3. A. Tcerbi-Narteh, M. Hosur, E. Triggs, P. Owuor, and S. Jelaani, Polym. Degrad. Stabil., 101, 81 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.12.033
  4. J. M. Lee and D. S. Kim, Polym. Compos., 28, 325 (2007). https://doi.org/10.1002/pc.20252
  5. J. H. Hong, UV Cured Coating, Chosun University Publishing, Gwangju, pp. 27-31 (2002).
  6. D. W. Kim, K.Y. Jeon, Y. H. Lee, J. C. Seo, K. W. Seo, H. S. Han, and S. Khan, Prog. Org. Coat., 74, 435 (2012). https://doi.org/10.1016/j.porgcoat.2012.01.007
  7. J. C. Seo, E. S. Jang, J. H. Jong, S. H. Choi, S. Khan, and H. S. Han, J. Appl. Polym. Sci., 118, 2454 (2010).
  8. Y. W. Chang and S. W. Kim, Surf. Coat. Tech., 232, 182 (2013). https://doi.org/10.1016/j.surfcoat.2013.05.004
  9. J. Segurola, N. Allen, M. Edge, and I. Roberts, Polym. Degrad. Stabil., 65, 153 (1999). https://doi.org/10.1016/S0141-3910(99)00003-8
  10. W. Rutsch, K. Dietliker, D. Leppard, M. Kohler, L. Misev, U. Kolczak, and G. Rist, Prog. Org. Coat., 27, 227 (1996). https://doi.org/10.1016/0300-9440(95)00539-0
  11. T. Sumiyoshi, W. Schnabel, A. Henne, and P. Lechtken, Polymer, 26, 141 (1996).
  12. T. H. Minh, T. L. Le, J. Kasbohm, and R. Giere, Appl. Clay Sci., 48, 349 (2010). https://doi.org/10.1016/j.clay.2010.01.005