• Title/Summary/Keyword: driver's workload

Search Result 44, Processing Time 0.029 seconds

The Effects of Driver's Trust in Adaptive Cruise Control and Traffic Density on Workload and Situation Awareness (적응형 정속 주행 시스템에 대한 운전자 신뢰와 도로 혼잡도가 작업부하 및 상황인식에 미치는 효과)

  • Kwon, Soon-Chan;Lee, Jae-Sik
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.103-120
    • /
    • 2020
  • Using driving simulation, this study investigated the effects of driver's trust in the adaptive cruise control (ACC) system and road density on driver's workload and situation awareness. The drivers were allocated into one of four experimental conditions manipulated by ACC system trust level (trust-increased vs. trust-decreased) and road congestion (high vs. low). The workload and situational awareness of the participants were measured as dependent variables. The results showed followings. First, trust-decreased group for the ACC system had significantly lower trust scores for the system in all of the measurement items, including reducing the driving load and securing safe driving due to the use of this system, than the trust-increased group. Second, the trust-decreased group showed a slower reaction time in the secondary tasks and higher subjective workload than trust-increased group. Third, in contrast, the situational awareness for the driving situation was significantly higher in the trust-decreased group than trust-increased group. The results of this study showed that the driver's trust in the ACC system can affect the various information processing performed while driving. Also, these results suggest that trust in the user's system should be considered as an important variable in the design of an automated driving assistance system.

Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour (운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발)

  • Kim, Jinyong;Jeong, Changhyun;Jeong, Minji;Jung, Dohyun;Woo, Jinmyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

A Study on HMI Assessment of Joystick Driving System Using the Physiological Signal Measurement Method (생리신호 측정기법을 이용한 Joystick 운전방식의 HMI 평가연구)

  • Kim, Bae-Young;Koo, Tae-Yun;Bae, Chul-Ho;Park, Jung-Hoon;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Recently, the vehicle driving device has been designed for driver's convenience. Especially, the automobile industry develops the vehicle using the joystick instead of steering wheel from the concept car. The biggest strength of using the joystick is that the driver feels less workload and fatigue than when the driver uses steering wheel. However, this kind of study still needs more research and experiments for more accurate result. Therefore, this research evaluated workload according to the driving device by the survey and the measurement of physiological signal. The reason not only using the survey also using the measurement of physiological signal is to support the result of the survey which is not enough to bring the accurate result. There were tow different kinds of methods to carry out this research; SWAT (Subjective Workload Assessment Technique) for the survey and the biopac equipment for the measurement of physiological signal. Furthermore, previously established driving simulator, GPS (Global Positioning System), and Seoul-Cheonan virtual expressway DB were used for the experiment. As the result of the experiment with 13 subjects, it was certain that using joystick device brings less workload and fatigue to the drivers than using steering wheel following both methods-the survey and the measurement of physiological signal. Also, it confirmed the significant result from the SPSS (Statistical Package for the Social Sciences) statistics analysis program.

Comparison on the Driver Characteristics and Subjective Workload according to the Road Direction Change using Driving Simulator (도로주행방향 변화에 따른 운전 특성 및 주관적 부하의 운전 시뮬레이터 기반 비교 평가)

  • Jeon, Yong-Wook;Daimon, Tatsuru;Kawashima, Hironao;Kwon, Kyu-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The directions of the road are divided into two, the right-hand side and left-hand side of the road, by the convention and specific native method in the world. This paper deals with the characteristics and behaviors of drivers who are accustomed to driving on right-hand side of the road, drive with a handle on the left-hand side, and comparing with left-hand side drivers. The driver's eye movements were measured by eye camera and questionnaires were used for measuring subjective evaluation such as driving mental workload. The experimental results indicated even if the experts who had much experience on right-hand side driving, they had lower driving skill than novice driver, accustomed to driving on left-hand side. In terms of mental workload, MCH rating scale and MNASA-TLX, the right-hand side drivers were in lower stress condition than the left-hand side drivers because of having much driving experience. However, they conducted a few mistakes by confusing the position of turn signal and windshield wiper because of their driving habit or traits and it lead to operation mistakes. These results can be applied effectively to develop the driving support information with changed environments.

The Relationship between Subjective Driving Workload and Effects of PG Technology (주관적 운전부하 수준과 PG기법 적용효과의 관계)

  • O, Ju-Seok;Hwang, Bong-Gi;Lee, Sun-Cheol;Lee, Jong-Hak;Kim, Jong-Min;No, Gwan-Seop
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.37-45
    • /
    • 2011
  • The main objective of this study is two-fold: 1) to analyze the effect of PG technology application on road user's satisfaction and driving speed, and 2) to investigate the relationship between driver's subjective workload level and their reactions related to the PG technology application. Based on the result of field observation, the experimental scenario for driving simulation study was prepared. The experimental results showed that drivers were more satisfied to the road condition with PG technology applied, and even the pattern of speed reduction was more stable than control condition. The pattern of speed reduction along driver's subjective driving workload level were slightly different by physical road condition, and road user's satisfaction was revealed to be negatively correlated with their subjective driving workload level. This result indicates that depending on situation and driver characteristic, information for the drivers could be nothing more than nuisance that just distracts drivers. In order to facilitate the implementation of PG technology in Korea, further study on related human factors, especially for those who are weak in traffic situations, is recommended.

Effect of Driver's Cognitive Distraction on Driver's Physiological State and Driving Performance

  • Kim, Jun-Hoe;Lee, Woon-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.371-377
    • /
    • 2012
  • Objective: The aim of this study is to investigate effect of driver's cognitive distraction on driver's physiological state and driving performance, and then to determine parameters appropriate for detecting the cognitive distraction. Background: Driver distraction is a major cause of traffic accidents and poses a serious threat to traffic safety due to ever increasing use of in-vehicle information systems and mobile phones during driving. Cognitive distraction, among four different types of distractions, prevents a driver from processing traffic information correctly and adapting to change in surround vehicle behavior in time. However, the cognitive distraction is more difficult to detect because it normally does not involve significant change in driver behavior. Method: A full-scale driving simulator was used to create virtual driving environment and situations. Participants in the experiment drove the driving simulator in three different conditions: attentive driving with no secondary task, driving and conducting secondary task of adding numbers, and driving and conducting secondary task of conversing with an experimenter. Parameters related with driver's physiological state and driving performance were measured and analyzed for their change. Results: The experiment results show that driver's cognitive distraction, induced by secondary task of addition and conversation during driving, increased driver's cognitive workload, and indeed brought change in driver's physiological state and degraded driving performance. Conclusion: The galvanic skin response, pupil size, steering reversal rate, and driver reaction time are shown to be statistically significant for detecting cognitive distraction. The appropriate combination of these parameters will be used to detect the cognitive distraction and estimate risk of traffic accidents in real-time for a driver distraction warning system.

The Human Vehicle Interface System for Integrating and Managing the In-Vehicle Interactions with IT Devices

  • Choi, Jong-Woo;Park, Hye-Sun;Kim, Kyong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.651-657
    • /
    • 2011
  • Objective: The aim of this study is to investigate the system to integrate and manage the in-vehicle interactions between the drivers and the in-vehicle mobile IT devices. Background: As the mobile IT technology is being used anywhere, the drivers are interacting with the mobile IT device on driving situations. The distraction of the driver's attention causes the car accidents. It is necessary to develop the HVI(Human Vehicle Interface System) to integrate and manage the in-vehicle interactions with IT devices. Method: The HVI System is designed not as the interfacing subject but as the supervising system to monitor the driver's status and support the driver to concentrate on the primary tasks. The HVI system collects the status information of the car and driver and estimate the driving workload. Results: The HVI system controls how to provide the output information based on the driving workload. We implemented the HVI system prototype and applied in the real vehicle with the HVI cell phone and the HVI car navigation system. Conclusion: Depending on the driving situations, the HVI system prevented the information output in dangerous situation and diversified the modality and the intensity of the output information. Application: We will extend the HVI system to be connected the other various IT devices and verity the effectiveness of the system through various experiments.

The Effects of Control Takeover Request Modality of Automated Vehicle and Road Type on Driver's Takeover Time and Mental Workload (자율주행 차량의 제어권 인수요구 정보양상과 도로 형태에 따른 운전자의 제어권 인수시간과 정신적 작업부하 차이)

  • Nam-Kyung Yun;Jaesik Lee
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.51-70
    • /
    • 2023
  • This study employed driving simulation to examine how takeover request (TOR) information modalities (visual, auditory, and visual + auditory) in Level-3 automated vehicles, and road types (straight and curved) influence the driver's control takeover time (TOT) and mental workload, assessed through subjective workload and heart rate variations. The findings reveal several key points. First, visual TOR resulted in the quickest TOT, while auditory TOR led to the longest. Second, TOT was considerably slower on curved roads compared to straight roads, with the greatest difference observed under the auditory TOR condition. Third, the auditory TOR condition generally induced lower subjective workload and heart rate variability than the visual or visual + auditory conditions. Finally, significant heart rate changes were predominantly observed in curved road conditions. These outcomes indicate that TOT and mental workload levels in drivers are influenced by both the TOR modality and road geometry. Notably, a faster TOT is associated with increased mental workload.

A Study on Evaluation Method of the Adaptive Cruise Control (ACC 차량의 시험평가 방법에 대한 연구)

  • Kim, Bong Ju;Lee, Seon Bong
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.8-17
    • /
    • 2017
  • With automobiles sharply increasing in numbers worldwide, we are faced with critical social issues such as traffic accidents, traffic jams, environmental pollution, and economic inefficiency. In response, research on ITS is promoted mainly by regions with advanced automotive industry such as the U.S., Europe, and Japan. While Korea is working on moving forward in the global market through developing and turning to global standards systems related to ASV (Advanced Safety Vehicle), the country is not fully prepared for such projects. The purpose of ACC (Adaptive Cruise Control) is to control a vehicle's longitudinal speed and distance and minimize driver workload. Such a system should be valuable in preventing accidents, as it reduces driver workload in the 21st-century world of telematics created by development of the automobile culture industry. In this light, the thesis presents a method to test and evaluate ACC system and a mathematical method to assess distance. For the proposed test and evaluation, theoretical values are tested with vehicle test and a database is acquired, by using vehicles equipped with an ACC system. Theoretical evaluation criteria for developing ACC system may be used and scenario-specific evaluation methods may find useful application through testing the formula proposed by comparing the database and mathematical method.

A Study on the Navigation Menu Structure with Screen Size (Screen Size를 고려한 최적 Menu Structure에 관한 연구)

  • Kim, Seong-Min;Choe, Jae-Ho;Jung, Eui-S.;Choi, Kwang-Soo;Jeon, Myoung-Hoon;Park, Jun-Ho;Ahn, Jeong-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.380-385
    • /
    • 2008
  • To perform the navigation functions more efficiently, the navigation menu structure should be provided easy to understand to the driver in the vehicle environment that is restricted by driving workload, According to these conditions, to design better navigation interface, it is important to study on the navigation menu structure that is depend on the screen size and the information width and depth. Therefore, in this study we provided the different menu structures of 7-inch touchscreen LCD and 4-inch touchscreen LCD to the driver respectively in the driving simulator. Then, we compared the preference of each menu structures with the different touchscreen LCD.

  • PDF