DOI QR코드

DOI QR Code

The Effects of Control Takeover Request Modality of Automated Vehicle and Road Type on Driver's Takeover Time and Mental Workload

자율주행 차량의 제어권 인수요구 정보양상과 도로 형태에 따른 운전자의 제어권 인수시간과 정신적 작업부하 차이

  • Received : 2023.06.30
  • Accepted : 2023.08.15
  • Published : 2023.12.31

Abstract

This study employed driving simulation to examine how takeover request (TOR) information modalities (visual, auditory, and visual + auditory) in Level-3 automated vehicles, and road types (straight and curved) influence the driver's control takeover time (TOT) and mental workload, assessed through subjective workload and heart rate variations. The findings reveal several key points. First, visual TOR resulted in the quickest TOT, while auditory TOR led to the longest. Second, TOT was considerably slower on curved roads compared to straight roads, with the greatest difference observed under the auditory TOR condition. Third, the auditory TOR condition generally induced lower subjective workload and heart rate variability than the visual or visual + auditory conditions. Finally, significant heart rate changes were predominantly observed in curved road conditions. These outcomes indicate that TOT and mental workload levels in drivers are influenced by both the TOR modality and road geometry. Notably, a faster TOT is associated with increased mental workload.

본 연구에서는 운전 시뮬레이션을 사용하여 자율주행 환경을 구현한 후 3-수준 자율주행 조건에서 자율주행 차량 (automated vehicle: AV)으로부터 운전자에게 전달되는 제어권 인수 요구(takeover request: TOR) 정보의 양상(시각, 청각 및 시각+청각) 및 도로 형태(직선도로와 곡선도로)에 따라 운전자의 제어권 인수 시간(takeover time: TOT) 및 정신적 작업부하(제어권 인수 이후에 운전자들이 경험한 주관적 작업부하와 심장박동수에서의 변화)가 어떻게 차별화되는지 분석하였다. 본 연구의 결과를 요약하면 다음과 같다. 먼저, AV로부터 TOR이 제시된 이후 실험참가자들이 보인 TOT에 대한 분석 결과, TOR 정보양상의 측면에서는 시각 정보가 가장 빠른 TOT를 이끌어 낸 반면 청각정보 조건에서 가장 느렸고, 도로 형태 측면에서는 직선도로 조건에 비해 곡선도로 조건에서의 TOT가 유의하게 더 느렸으며, 특히 청각 정보 조건에서 도로 형태에 따른 TOT에서의 차이가 가장 컸다. 둘째, 정신적 작업부하에 대한 분석 결과, TOR 정보가 시각 혹은 시각+청각적으로 제시된 조건에 비해 청각적으로 제시된 조건에서 주관적 작업부하 측정치와 심장박동수 변화 크기 모두 전반적으로 더 낮았고 특히, 심장박동수 변화의 경우 이러한 경향은 곡선도로 조건에서만 관찰되었다. 이러한 결과는 TOR 정보의 양상과 도로 형태에 따라 운전자의 TOT와 정신적 작업부하 수준이 달라질 수 있고, 특히 TOT가 빠를수록 정신적 작업부하 수준은 상대적으로 더 높아질 수 있음을 시사한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1A2C1008447).

References

  1. Beukel, A. P., van der Voort, M. C., & Eger, A. O. (2016). Supporting the changing driver's task: Exploration of interface designs for supervision and intervention in automated driving. Transportation Research: Part F, Traffic Psychology and Behavior, 43, 279-301. DOI: 10.1016/j.trf. 201.09.009
  2. Borojeni, S. S., Chuang, L., Heuten, W., & Boll, S. (2016). Assisting drivers with ambient take-over requests in highly automated driving. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 237-244). ACM. DOI: 10.1145/3003715.3005409
  3. Brady, B., Eramudugolla, R., Wood, J. M., & Anstey, K. J. (2021). Association between decision-making under risk conditions and on-road driving safety among older drivers, Neuropsychology, 35(6), 622-629. DOI: 10.1037/neu0000754
  4. Brookhuis, K. A., & De Waard, D. (2010). Monitoring drivers' mental workload in driving simulators using physiological measures. Accident Analysis & Prevention, 42(3), 898-903. DOI: 10.1016/j.aap.2009.06.001
  5. Casner, S. M., Hutchins, E. L., & Norman, D. (2016). The challenges of partially automated driving. Communications of the ACM, 59(5), 70-77. DOI:10.1145/2830565
  6. Clark, H., & Feng, J. (2017). Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation. Accident Analysis & Prevention, 106, 468-479. DOI: 10.1016/j.aap. 2016.08.027
  7. Corver, S. C., Unger, D., & Grote, G. (2016). Predicting air traffic controller workload: trajectory uncertainty as the moderator of the indirect effect of traffic density on controller workload through traffic conflict. Human Factors, 58(4), 560-573. DOI:10.1177/0018720816639418
  8. Dogan, E., Honnet, V., Masfrand, S., & Guillaume, A. (2019). Effects of non-driving-related tasks on takeover performance in different takeover situations in conditionally automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 494-504. DOI: 10.1016/j.trf. 2019.02.010
  9. Edquist, J., Rudin-Brown, C. M., & Lenne, M. G. (2012). The effects of on-street parking and road environment visual complexity on travel speed and reaction time. Accident Analysis & Prevention, 45, 759-765. DOI: 10.1016/j.aap.2011.10.001
  10. Eriksson, A., & Stanton, N. A. (2017). Takeover time in highly automated vehicles: noncritical transitions to and from manual control. Human Factors, 59(4), 689-705. DOI: 10.1177/0018720816685832
  11. Gold, C., Dambock, D., Lorenz, L., & Bengler, K. (2013). "Take over!" How long does it take to get the driver back into the loop?. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1), 1938-1942. Los Angeles, USA: SAGE Publications. DOI: 10.1177/1541931213571433
  12. Gold, C., Korber, M., Lechner, D., & Bengler, K. (2016). Taking over control from highly automated vehicles in complex traffic situations: the role of traffic density. Human Factors, 58(4), 642-652. DOI:10.1177/0018720816634226
  13. Goodall, N. J. (2014). Ethical decision making during automated vehicle crashes. Transportation Research Record, 2424(1), 58-65. DOI: 10.3141/2424-07
  14. Heikoop, D. D., de Winter, J. C., van Arem, B., & Stanton, N. A. (2019). Acclimatizing to automation: driver workload and stress during partially automated car following in real traffic. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 503-517. DOI: 10.1016/j.trf.2019.07.024
  15. Huang, G., Steele, C., Zhang, X., & Pitts, B. J. (2019, November). Multimodal cue combinations: A possible approach to designing in-vehicle takeover requests for semi-autonomous driving. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 1739-1743. Sage CA: Los Angeles, CA: SAGE Publications.
  16. Joo, M., & Lee, J. (2014). The Relationship between older drivers' BIS/BAS and life satisfaction: mediating effects of mobility and affectivity. Korean Journal of the Science of Emotion and Sensibility, 17(4), 29-40.
  17. Kim, N., Jeong, K., Yang, M., Oh, Y., & Kim, J. (2017). "Are you ready to take-over?" An exploratory study on visual assistance to enhance driver vigilance. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing System, 1771-1778. Denver, CO, USA: ACM. DOI: 10.1145/3027063.3053155
  18. Kim, S., van Egmond, R., & Happee, R. (2021). Effects of user interfaces on take-over performance: A review of the empirical evidence. Information, 12(4), 162. DOI: 10.3390/info12040162
  19. Lee, J. (2018). Comparisons of middle- and old-aged drivers' recognition for driving scene elements using sensitivity, response bias, and response time. Journal of the Korean Data Analysis Society, 20(6), 3185-3199. https://doi.org/10.37727/jkdas.2018.20.6.3185
  20. Lee, J. (2020). Difference in middle-aged and elderly drivers' performances in continuous lateral tracking and selecting stimuli varied in visual angle. Journal of The Korean Data Analysis Society, 22(6), 2489-2503. DOI: 10.37727/jkdas.2020.22.6.2489
  21. Lee, J. (2021). The effects of road type and driver's age on simulator sickness. Journal of the Korean Data Analysis Society, 23(5), 2365-2380. DOI: 10.37727/jkdas.2021.23.5.2365
  22. Lee, J. (2022). Differences in detection response and driving performance of middle-aged and elderly drivers according to stimulus location and road type: A driving simulation study. Journal of The Korean Data Analysis Society, 24(4), 1543-1561. DOI: 10.37727/jkdas.2022.24.4.1543
  23. McKnight, A. J., & McKnight, A. S. (1999). Multivariate analysis of age-related driver ability and performance deficits. Accident Analysis and Prevention, 31(5), 445-454. DOI: 10.1016/S0001-4575(98)00082-7
  24. Mehler, B., Reimer, B., & Coughlin, J. F. (2012). Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task: An on-road study across three age groups. Human Factors, 54(3), 396-412. https://doi.org/10.1177/0018720812442086
  25. Merat, N., Jamson, A. H., Lai, F. C. H., & Carsten, O. (2012). Highly automated driving, secondary task performance, and driver state. Human Factors, 54(5), 762-771. DOI: 10.1177/0018720812442087
  26. Ministry of Land, Infrastructure and Transport. (2018). Linear Design (KDS 44 20 10: 2018), Sejong, Republic of Korea: KDS.
  27. Mollenhauer, M. A., Lee, J., Cho, K., Hulse, M. C., & Dingus, T. A. (1994). The effects of sensory modality and information priority on in-vehicle signing and information systems. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 38(16), 1072-1076. Los Angeles, USA: SAGE Publications.
  28. Naujoks, F., Forster, Y., Wiedemann, K., & Neukum, A. (2016). Speech improves human-automation cooperation in automated driving. In Mensch and Computer 2016-Workshopband. Aachen, Germany: DBLP. DOI: 10.18420/muc2016-ws08-0007
  29. Neurauter, M. L. (2005). Multimodal warnings: Curvewarning design. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 49(22), 1945-1949. Los Angeles, USA: SAGE Publications. DOI: 10.1177/154193120504902 21
  30. NHTSA, (2013). Department of Transportation Releases Policy on Automated Vehicle Development. National Highway Traffic Safety Administration.
  31. Park, M., & Son, J. (2019). Reference test scenarios for assessing the safety of take-over in a conditionally autonomous vehicle, In Transactions of KSAE, 27(4), 309-317. DOI: 10.7467/KSAE.2019.27.4.309
  32. Pennetti, C. A., Hollenback, K., Kim, I., & Lambert, J. H. (2019). Cognitive load variability from road characteristics should influence a safety requirement for vehicle stopping sight distance. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2129-2133. Sage CA: Los Angeles, CA: SAGE Publications. DOI: 10.1177/1071181319631396
  33. Politis, I., Brewster, S., & Pollick, F. (2015). Languagebased multimodal displays for the handover of control in autonomous cars. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 3-10. Nottingham, UK: ACM. DOI: 10.1145/2799250.2799262
  34. Radlmayr, J., Gold, C., Lorenz, L., Farid, M., & Bengler, K. (2014). How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2063-2067. Sage CA: Los Angeles, CA: Sage Publications. DOI: 10.1177/1541931214581434
  35. Reimer, B., Mehler, B., & Coughlin, J. F. (2016). Reductions in self-reported stress and anticipatory heart rate with the use of a semi-automated parallel parking system. Applied Ergonomics, 52, 120-127. DOI: 10.1016/j.apergo.2015.07.008
  36. Risser, R. (2019). The Safety of Intelligent Driver Support Systems: Design, Evaluation and Social Perspectives. CRC Press.
  37. Roche, F., Somieski, A., & Brandenburg, S. (2019). Behavioral changes to repeated takeovers in highly automated driving: Effects of the takeover-request design and the nondriving-related task modality. Human Factors, 61, 839-849. DOI: 10.1177/0018720818814963
  38. SAE International. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE international, 4970, 1-5.
  39. Salvucci, D. D., Boer, E. R., & Liu, A. (2001). Toward an integrated model of driver behavior in cognitive architecture. Transportation Research Record: Journal of the Transportation Research Board, 1779(1), 9-16. DOI: 10.3141/1779-02
  40. Shen, S., & Neyens, D. M. (2014). Assessing drivers' performance when automated driver support systems fail with different levels of automation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 2068-2072. Sage CA: Los Angeles, CA: Sage Publications.
  41. So, J. J., Park, S., Kim, J., Park, J., & Yun, I. (2021). Investigating the impacts of road traffic conditions and driver's characteristics on automated vehicle takeover time and quality using a driving simulator. Journal of Advanced Transportation, 1-13. DOI: 10.1155/2021/8859553
  42. Son, J., & Park, M. (2013). The impact of cognitive workload on driving performance and visual attention in younger and older drivers. Transactions of the Korean Society of Automotive Engineers, 21(4), 62-69. DOI: 10.7467/KSAE.2013.21.4.062
  43. Telpaz, A., Rhindress, B., Zelman, I., & Tsimhoni, O. (2015). Haptic seat for automated driving: Preparing the driver to take control effectively. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 23-30. Nottingham, UK: ACM. DOI: 10.1145/2799250.2799267
  44. van der Heiden, R. M., Iqbal, S. T., & Janssen, C. P. (2017). Priming drivers before handover in semi-autonomous cars. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 392-404. Denver, Colorado, USA: ACM. DOI: 10.1145/3025453.3025507
  45. Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2015). Engineering psychology and human performance. Psychology Press. DOI:10.4324/9781315665177
  46. Wu, H., Wu, C., Lyu, N., & Li, J. (2022). Does a faster takeover necessarily mean it is better? A study on the influence of urgency and takeover-request lead time on takeover performance and safety. Accident Analysis & Prevention, 171, 106647. DOI: 10.1016/j.aap.2022.106647
  47. Xu, C., Li, P., Li, Y., Merat, N., Lu, Z., & Guo, X. (2022). Takeover performance and workload under varying automation levels, time budget and road curvature. In 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 1379-1385. IEEE.
  48. Yeragani, V. K., Edward, S., Jerald, K, Gina, I. (1997). Effect of age on long-term heart rate variability. Cardiovascular Research, 35(1), 35-42. DOI: 10.1016/S0008-6363(97)00107-7
  49. Yoon, S. H., Kim, Y. W., & Ji, Y. G. (2019). The effects of takeover request modalities on highly automated car control transitions. Accident Analysis and Prevention, 123, 150-158. DOI: 10.1016/j.aap.2018.11.018
  50. Yu, D., Park, C., Choi, H., Kim, D., & Hwang, S. H. (2021). Takeover safety analysis with driver monitoring systems and driver-vehicle interfaces in highly automated vehicles. Applied Sciences, 11(15), 6685. DOI: 10.1177/0018720818814963
  51. Zeeb, K., Buchner, A., & Schrauf, M. (2016). Is take-over time all that matters?: The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accident Analysis and Prevention, 92, 230-239. DOI: 10.1016/ j.aap.2016.04.002