DOI QR코드

DOI QR Code

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design

근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가

  • 구본학 (숭실대학교 신소재공학과) ;
  • 이동희 (숭실대학교 신소재공학과) ;
  • 김주용 (숭실대학교 신소재공학과)
  • Received : 2023.06.22
  • Accepted : 2023.09.13
  • Published : 2023.12.31

Abstract

This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

본 연구는 EMG(electromyography) 텍스타일 전극 개발을 목적으로 레이어 수의 디자인 및 원단을 다르게 하여 성능 및 신호 획득 안정성을 평가한다. 레이징 및 프레스 공정을 통하여 텍스타일 전극을 제조하며 Layer-0, Layer-1, Layer-2로 레이어 유무 및 수에 따른 결과를 분석했다. 이에 레이어 유무에 따라서는 근활성 측정에 영향을, 수가 많을수록 높은 성능이 나타남을 확인할 수 있었다. Layer-2 구조로 통일하여 5가지의 원단(네오프렌, 스판덱스 쿠션, 폴리에스테르 100%, 나일론 스판덱스, 광목 캔버스)으로 전극을 제조해 실험해 보았다. 성능적인 면에서, 원단의 중량이 높은 나일론 스판덱스가 높은 성능을 보였으며, 스판쿠션 텍스타일 전극이 근활성도 수득에 높은 안정성을 보였다. 이에 위 연구는 레이어에 따른 성능 연관성과 전극-피부사이의 닿는 면적 간의 관계 등을 고찰하여 슬리브 전체의 의복압을 늘리는 대신 특정 센서 측정 부위에만 높은 압력을 가함으로 차후 연구에서 레이어의 수 및 물성에 따른 전극의 공학적 설계 가능성을 제시한 의의가 있다.

Keywords

Acknowledgement

이 논문은 2023년도 정부 (산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2023년 산업혁신인재성장지원사업).

References

  1. Acar, G., Ozturk, O., Golparvar, A. J., Elboshra, T. A., Bohringer, K., & Yapici, M. K. (2019). Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics, 8(5), 479. DOI: 10.3390/electronics8050479 
  2. Carvalho, H., Catarino, A. P., Rocha, A., & Postolache, O. (2014). Health monitoring using textile sensors and electrodes: An overview and integration of technologies. 2014 IEEE international symposium on medical measurements and applications (MeMeA). 
  3. De Luca, C. J., Gilmore, L. D., Kuznetsov, M., & Roy, S. H. (2010). Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 43(8), 1573-1579.  https://doi.org/10.1016/j.jbiomech.2010.01.027
  4. Hewson, D. J., Hogrel, J.-Y., Langeron, Y., & Duchene, J. (2003). Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings. Journal of Electromyography and Kinesiology, 13(3), 273-279.  https://doi.org/10.1016/S1050-6411(02)00097-4
  5. Kaur, H., Singh, T., Arya, Y. K., & Mittal, S. (2020). Physical fitness and exercise during the COVID-19 pandemic: A qualitative enquiry. Frontiers in Psychology, 2943. DOI: 10.3389/fpsyg.2020.590172 
  6. Rai, P., Oh, S., Shyamkumar, P., Ramasamy, M., Harbaugh, R. E., & Varadan, V. K. (2013). Nanobio-textile sensors with mobile wireless platform for wearable health monitoring of neurological and cardiovascular disorders. Journal of The Electrochemical Society, 161(2), B3116. 
  7. Reaz, M. B. I., Hussain, M. S., & Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online, 8, 11-35.  https://doi.org/10.1251/bpo115
  8. Roy, S. H., De Luca, G., Cheng, M. S., Johansson, A., Gilmore, L. D., & De Luca, C. J. (2007). Electromechanical stability of surface EMG sensors. Medical & Biological Engineering & Computing, 45, 447-457.  https://doi.org/10.1007/s11517-007-0168-z
  9. Taji, B., Shirmohammadi, S., Groza, V., & Batkin, I. (2013). Impact of skin-electrode interface on electrocardiogram measurements using conductive textile electrodes. IEEE Transactions on Instrumentation and Measurement, 63(6), 1412-1422.  https://doi.org/10.1109/TIM.2013.2289072
  10. Tankisi, H., Burke, D., Cui, L., de Carvalho, M., Kuwabara, S., Nandedkar, S. D., Rutkove, S., Stalberg, E., van Putten, M. J., & Fuglsang-Frederiksen, A. (2020). Standards of instrumentation of EMG. Clinical Neurophysiology, 131(1), 243-258. DOI: 10.1016/j.clinph.2019.07.025 
  11. Valente, J., Kozlova, V., & Pereira, T. (2021). BrainAnswer 4 platform. Promoting Healthy and Active Ageing: A Multidisciplinary Approach, 36. 
  12. Xu, P., Zhang, H., & Tao, X. (2008). Textile-structured electrodes for electrocardiogram. Textile Progress, 40(4), 183-213.  https://doi.org/10.1080/00405160802597479
  13. Son, M. Y., & Yoon, N. H. (2023). Fashion consumption expenditure during the COVID-19 pandemic: Comparison by generation and income status. Korean Journal of The Science of Emotion & Sensibility, 26(1), 3-16. DOI: 10.14695/kjsos.2023.26.1.3 
  14. Cho, H.-S., Yang, J.-H., & Lee, J.-H. (2022). The effect of textile electrode configuration on the bio-signal sensing performance. In Proceeding of 2022 Spring Conference of Korean Society for Emotion & Sensibility, 27-27. 
  15. Cho, H. K., Song, H. Y., Cho, H. S., Goo, S. M., & Lee, J. H. (2010). A study on the design of functional clothing for vital sign monitoring -based on ECG sensing clothing-. Science of Emotion & Sensibility, 13(3), 467-474. 
  16. Jung, C. W., Kwak, Y. H., Park, S, H., & Lee, J. H. (2017). Research on planning and design of smart fitness wear for personal training improvement. Science of Emotion & Sensibility, 20(3), 97-108. DOI: 10.14695/KJSOS.2017.20.3.97 
  17. Yukawa, T. (2000). Discrimination of motions with physical deformation of muscles and EMG. In Proceeding of 2000 Spring Conference of Korean Society for Emotion & Sensibility, 109-112. 
  18. Farina, D., Lorrain, T., Negro, F., & Jiang, N. (2010, August). High-density EMG E-textile systems for the control of active prostheses. In 2010 Annual international conference of the IEEE engineering in medicine and biology (pp. 3591-3593). IEEE. 
  19. Crawford, L. E., & Vavra, D. T. (2016). Typing with EMG using MyoWare. 
  20. Solnik, S., DeVita, P., Rider, P., Long, B., & Hortobagyi, T. (2008). Teager-Kaiser operator improves the accuracy of EMG onset detection independent of signal-to-noise ratio. Acta of bioengineering and Biomechanics/Wroclaw University of Technology, 10(2), 65. 
  21. Laferriere, P., Lemaire, E. D., & Chan, A. D. (2011). Surface electromyographic signals using dry electrodes. IEEE Transactions on Instrumentation and Measurement, 60(10), 3259-3268.  https://doi.org/10.1109/TIM.2011.2164279
  22. An, X., Tangsirinaruenart, O., & Stylios, G. K. (2019). Investigating the performance of dry textile electrodes for wearable end-uses. The Journal of The Textile Institute, 110(1), 151-158. DOI: 10.1080/00405000.2018.1508799