• Title/Summary/Keyword: 텍스타일 센서

Search Result 22, Processing Time 0.025 seconds

Wearable Textile Strain Sensors (웨어러블 텍스타일 스트레인 센서 리뷰)

  • Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

Resistive E-band Textile Strain Sensor Signal Processing and Analysis Using Programming Noise Filtering Methods (프로그래밍 노이즈 필터링 방법에 의한 저항 방식 E-밴드 텍스타일 스트레인 센서 신호해석)

  • Kim, Seung-Jeon;Kim, Sang-Un;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2022
  • Interest in bio-signal monitoring of wearable devices is increasing significantly as the next generation needs to develop new devices to dominate the global market of the information and communication technology industry. Accordingly, this research developed a resistive textile strain sensor through a wetting process in a single-wall carbon nanotube dispersion solution using an E-Band with low hysteresis. To measure the resistance signal in the E-Band to which electrical conductivity is applied, a universal material tester, an Arduino, and LCR meters that are microcontroller units were used to measure the resistance change according to the tensile change. To effectively handle various noises generated due to the characteristics of the fabric textile strain sensor, the filter performance of the sensor was evaluated using the moving average filter, Savitsky-Golay filter, and intermediate filters of signal processing. As a result, the reliability of the filtering result of the moving average filter was at least 89.82% with a maximum of 97.87%, and moving average filtering was suitable as the noise filtering method of the textile strain sensor.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

Development and Structural Design of Textile Touch Sensor Easily Implemented (구현방식이 용이한 텍스타일 터치센서 개발 및 구조적 설계)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.168-179
    • /
    • 2021
  • This study presents and develops a textile type touch sensor structural design that is easy to implement. First, the design of the touch sensor circuit finds the size of the switch with the easiest finger contact and selects a structure with a long circuit with the lowest resistance value. An experiment is performed on a change in an electrostatic capacitance value that accompanies the distance on the electrode and the magnitude of the electrode area of the structure; however, the structure having the distance on the electrode and the large electrode area shows the best resistance change. The laundry assessment was conducted three times at a time and ten times at a time with an average standard deviation less than one ohm, with little change in resistance. Consequently, there were no problems with durability and performance for laundry. Finally, in the bending evaluation, the difference in resistance can be seen between 1-2 ohms and was developed as a smart wearable in the future; in addition, there was no problem as a difference in resistance can be seen between 1 and 2 ohms.

A Review Study of Biosensors applicable to Wellness Wear (웰니스 의류에 적용 가능한 바이오센서 동향 연구)

  • Kim, Hyo-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.231-243
    • /
    • 2017
  • This paper provides a review of the electrical sensing biosensors and examine research cases of biosensors based on clothing and textiels. A biosensor which can measure bio-signals is a device that senses the physical and chemical characteristics of biological materials by using biological sensing materials. Therefore, wellness wear that is closely integrated with the user's real life will play an important role in achieving U-Health. The biosensors' unique feature which can be differentiated from the existing sensors is it's using of selective reactions and binding of biological substances. The electrical sensing biosensors are very small in size due to the processing of electrical signals, which can be used to create ubiquitous. Therefore, it is necessary to study electrical sensing biosensors that are easy to miniaturize to develop wellness wear. This paper describes the electrical sensing biosensor (an electrochemical method nanowire/carbon nanotube FET method) in detail. Finally, the future direction of biosensors to be applied to wellness wear is suggested.

Development of Smartphone Control Jacket Using Textile Touch Sensor (텍스타일 터치센서를 활용한 스마트폰 제어 기능 재킷 개발)

  • Park, Jinhee;Kim, Ji-seon;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.5
    • /
    • pp.140-157
    • /
    • 2020
  • The purpose of this study is to develop three functions for smartphones and PCs using a textile touch sensor in an everyday sports jacket and to present their usefulness; to this end, we have developed a mutual capacitive textile touch sensor and corresponding structure, and we have implemented three functions into a textile touch sensor jacket, of which we also conducted a usability evaluation. The jacket has a sensor on the wrist of the left sleeve and a device on the left arm. The sensor system can be divided into three main categories: a sensor acting as a switch, a circuit connecting the sensor and the device, and the device that acts as power control and system on/off. The functions are implemented in the texture touch sensor jacket in three modes: cell phone mode, music mode, and PPT presentation mode. We conducted an evaluation of each function in each mode, which indicated that all functions performed well without errors and that the switch had excellent operation for the number and intensity of touch. In terms of usability in a humid environment, the performance of touch functions was found to be equally implemented. In the temperature environment, neither high nor low temperatures caused issues with the functions. A wearing satisfaction assessment evaluated psychological satisfaction, clothing convenience, device convenience, device usability, and device effectiveness. This research jacket is thought to be desirable for the relatively bendable, flexible, and intimate sensor used on the clothing, and the circuit made of conductive fabric tape.

The Sthdy for seamless garment design for detection of precordial leads of electrocardiography (흉부유도형 심전도 검출을 위한 밀착형 의류 설계에 관한 연구)

  • Jeong, Jae-Hun;Ryu, Ji-Hyeon;Jo, Jin-Hwang;Kim, Hong-Je
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.202-205
    • /
    • 2009
  • 체력이나 건강을 위한 트레이닝이나 심장 질환자의 생체신호 모니터링을 위해 다양하게 사용되는 심전도는 현재 여러가지 장비형태로 사용되고 있다. 최근에는 착용자가 인식하지 않고 손쉽고 편안한 방법으로 측정하거나 모니터링 할 수 있는 형태의 생체신호 모니터링 의복에 관한 연구가 많이 진행되고 있다. 본 연구에서는 20대 남성의 체표면 분석을 통해 심전도 검출이 가능한 일체형 의복을 설계하고 제작된 시제품의 착의평가를 진행하였다. 심전도 측정이 가장 효과적인 흉부 부분을 중심으로 심전도 데이터 추출 정확성을 위해 다층구조로 센서를 설계하고, 흉부의 움직임을 최소화하여 노이즈를 감소할 수 있는 디자인을 제안한 결과, 심전도 데이터 추출 정확성 및 편의성은 향상되고 노이즈는 감소하는 결과를 도출하였다.

  • PDF