• Title/Summary/Keyword: double layered film

Search Result 54, Processing Time 0.031 seconds

Effect of the multilayer structure on electrical and mechanical properties fo thin film yttria stabilized zirconia electrolyte

  • Jung, In-Ho;Lee, You-Kee;Park, Jong-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The effect of mcirostructure on the electrical properties of yttria stabilized zirconia (YSZ) was analyzed by modeling layer arrangements and mixed phase structure. The YSZ thin films were deposited by RF magnetron sputtering using 30mol% YSZ and 8 mol% YSZ targets with yttrium pellets on porous alumina substrates. The structure, composition and electricla properties of the YSZ films were investigated as functions of sputtering conditons and layer arrangements by XRD, TEM, XPS and acimpedance spectroscopy. The results showed that the triple palyered YSZ films had highermicrohardness, lower compressive stress state and higher ionic conductivity by one order than single and double layered YSZ films. However, sputtered YSZ films have low conductivity compared to YSZ pellets or doctor bladed YSZ thin plates. These results were probably due to the influence of insulating alumina substrates, impractical for most stacking geometries and inductance induced by relatively long platinum, lead wire on YSZ conductivity.

Degradation Efficiencies of Gas Phase Hydrocarbons for Photocatalysis Reactor With TiO2Thin Film (TiO2광촉매 반응기의 기체상 탄화수소의 분해효율)

  • 이진홍;박종숙;김진석;오상협;김동현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.223-230
    • /
    • 2002
  • Titania photocatalytic oxidation reactors were studied to investigate degradation efficiencies of hydrocarbons. In general, it is well known phenomena that thin layered titania oxidizes most of hydrocarbons to carbon dioxide and water under UV light. In this study, degradation efficiencies were measured due to changes in reactor structures, UV sources, the number of titania coatings, and various hydrocarbon chemicals. It was proven that gas degradation efficiencies are related to such factors as UV transmittance of coating substance, collision area of surface, and gas flow rate. For packing type annular reactor, about 98% degradation efficiency was achieved for achieved for propylene of 500 ppm level at a flow rate of 100 ml/min. Several gases were also tested for double-coated titania thin film under the condition of continuous flow of 100 ml/min and 365 nm UV source. It was shown that degradation efficiencies were decreasing in the order: $C_3$ $H_{6}$, n-C$_4$ $H_{10}$, $C_2$ $H_4$, $C_2$ $H_2$, $C_{6}$ $H_{6}$ and $C_2$ $H_{6}$./. 6/./.

Nanoporous Membrane with Ultrahigh Selectivity and Flux Suitable for Filtration of Viruses

  • Yang, Seung-Yun;Ryu In-Cheol;Jang, Sung-Key;Kim, Jin-Kon;Russell Thomas P.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.313-313
    • /
    • 2006
  • In this study, we describe a new double layered nanoporous membrane suitable for virus filtration. One layer is an 80 nm thick film having cylindrical pores with diameters of 15 nm and a narrow pore size distribution. This layer is prepared by using a thin film of the mixture of a block copolymer and a homopolymer, and mainly acts to separate viruses. The support layer (${\sim}150\;microns\;thick$) is a conventional micro-filtration membrane with a broad pore size distribution. This asymmetric membrane showed very high selectivity and flux for the separation of human rhinovirus type 14 (HRV 14) which has a diameter of ${\sim}30\;nm$ and is a major pathogen of the common cold in humans.

  • PDF

The effect of 3-mercapto-5-nitro-benzimidazole (MNB) and poly (methyl methacrylate) (PMMA) treatment sequence organic thin film transistor

  • Park, Jin-Seong;Suh, Min-Chul;Jeong, Jong-Han;Kim, Su-Young;Mo, Yeon-Gon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1174-1177
    • /
    • 2006
  • A bottom contact organic thin film transistor (OTFT) is fabricated with an organic double-layered gate insulator (GI) and pentacene. The PMMA and MNB layers are treated on gate insulator and source/drain (S/D, Au) before depositing pentacene to investigate device properties and pentacene growth. The sequence of surface treatment affects a device performance seriously. The ultra-thin PMMA (below 50A) was deposited on organic gate insulator and S/D metal by spin coating method, which showed no deterioration of on-state current (Ion) although bottom contact structure was exploited. We proposed that the reason of no contact resistance (Rc) increase may be due to a wettability difference in between PMMA / Au and PMMA / organic GI. As a result, the device treated by $PMMA\;{\rightarrow}\;MNB$ showed much better Ion behavior than those fabricated by $MNB\;{\rightarrow}\;PMMA$. We will report the important physical and electrical performance difference associated with surface treatment sequence.

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

Structural Analysis of Cheju-style Plastic Greenhouse Model for Crop Growing Based on the Wind Load (풍하중을 고려한 제주형 작물재배용 비닐하우스모델의 구조해석)

  • 민창식;김용호;권기린
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • An elastic analysis under wind load was performed for the double layered plastic greenhouse model developed particularly for minimizing damages under typhoons at Cheju Citrus Research institute in Seagipo city. General EVA film was used for the inner covering and the developed special film which would break the wind pressure down was used for the outer covering. The wind tunnel test showed this special film reduced the wind speed up to 86 to 98% under well controlled situation. Based on the elastic analysis performed in the study, the behavior of the greenhouse was changed significantly due to the boundary conditions. Not like other researchers before we applied dead load of the concrete support to the ground pipe and fixed support boundary conditions at the 4 corner pipes. The analysis shows that the greenhouse was lifted and pulled the pipe out of the ground due to the sucking wind pressure. The behavior of the greenhouse was quite similar to that one real greenhouse failure. Therefore, not only we need to find the realistic boundary conditions for the supports, but also need to find how to rest the pipe supports on the ground without economic loss.

  • PDF

Electrical Characteristics of $(Ba,Sr)TiO_3/RuO_2$ Thin films

  • Park Chi-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.63-70
    • /
    • 2004
  • The structural, electrical properties of $(Ba, Sr)TiO_3[BSTO]/RuO_2$ thin films were examined by the addition of amorphous BSTO layer between crystlline BSTO film and $RuO_2$ substrate. We prepared BSTO films with double-layered structure, that is, amorphous layers deposited at $60^{\circ}C$ and crystalline films. Crystalline films were prepared at 550 on amorphous BSTO layer. The thickness of the amorphous layers was varied from 0 to 170 nm. During the deposition of crystalline films, the crystallization of the amorphous layers occurred and the structure was changed to circular while crystalline BSTO films showed columnar structure. Due to insufficient annealing effect, amorphous BSTO phase was observed when the thickness of the amorphous layers exceeded 30 nm. Amorphous BSTO layer could also prevent the formation of oxygen deficient region in $RuO_2$ surface. Leakage current of total BSTO films decreased with increasing amorphous layer thickness due to structural modifications. Dielectric constant showed maxi-mum value of 343 when amorphous layer thickness was 30 nm at which the improvement by grain growth and the degradation by amorphous phase were balanced.

  • PDF

Holographic Data Grating Formation of As40Ge10Se15S35 Single Layer, Ag/As40Ge10Se15S35 Double Layer and As40Ge10Se15S35/Ag/As40/Ge10Se15S35 Multi-layer Thin Films with the DPSS Laser (DPSS Laser에 의한 As40Ge10Se15S35, Ag/As40Ge10Se15S35와 As40Ge10Se15S35/Ag/As40/Ge10Se15S35박막의 홀로그래픽 데이터 격자형성)

  • Ju, Long-Yun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.240-244
    • /
    • 2007
  • We investigated the diffraction grating efficiency by the Diode Pumped Solid State(DPSS 532 nm) laser beam wavelength to improve the diffraction efficiency on $As_{40}Ge_{10}Se_{15}S_{35},\;Ag/As_{40}Ge_{10}Se_{15}S_{35}$ and $As_{40}Ge_{10}Se_{15}S_{35}/Ag/As_{40}Ge_{10}Se_{15}S_{35}$ thin film. Diffraction efficiency was obtained from DPSS laser, used (P:P)polarized laser beam on each thin films. As a result, for the laser beam intensity in $0.24mW/cm^2$, single $As_{40}Ge_{10}Se_{15}S_{35}$ thin film shows the highest value of 0.161% diffraction efficiency at 300 s and for laser beam intensity in $2.4mW/cm^2$, it was recorded with the fastest speed of 50 s(0.013%), which the diffraction grating forming speed is faster than that of $0.24mW/cm^2$ beam. $Ag/As_{40}Ge_{10}Se_{15}S_{35}$ double layer and $As_{40}Ge_{10}Se_{15}S_{35}/Ag/As_{40}Ge_{10}Se_{15}S_{35}$ multi-layered thin film also show the faster grating forming speed at $2.4mW/cm^2$ and higher value of diffraction efficiency at $0.24mW/cm^2$.

Microclimate and Crop Growth in the Greenhouses Covered with Spectrum Conversion Films using Different Phosphor Particle Sizes (광전환재 크기가 다른 광전환 필름 피복 온실 내 미기상 및 작물 생육)

  • Park, Kyoung Sub;Kwon, Joon Kook;Lee, Dong Kwon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The objective of this study was to analyze the microclimate and the growth of tomato and lettuce in the greenhouses covered with spectrum conversion films using different phosphor particles sizes. Two spectrum conversion films using phosphor particles larger than $10{\mu}m$ (Micro-film) and smaller than 500 nm (Nano-film) in radius, and poly-ethylene (PE) film were used in double-layered greenhouses as outer coverings. PE films were used as inner coverings in all the greenhouses. Thickness of the films for inner and outer coverings was 0.06 mm. Tensile strength, elongation, and tearing resistance of the Micro- and Nano-films were not different from those of the PE film. Transmittances at a wavelength of 300-1100 nm were a little higher at the Micro-film and lower at the Nano-film than that of the PE film, respectively. Air temperatures at the Micro- and Nano-films were over $2^{\circ}C$ higher than at the PE film, but no significant difference was observed between the two light conversion films. The soil temperature at the Nano-film was $1.5^{\circ}C$ and $3^{\circ}C$ higher than at the Micro- and PE films, respectively. The yields of tomato at the Micro- and Nano-films were 12% and 14% higher than at the PE film, but no significant difference was observed between the two spectrum conversion films. The total soluble solid showed no significant differences among all the films. The yields of lettuces at the Micro- and Nano-films were 27% and 59% higher than at the PE film. Hunter's red (a) value of the lettuce leaf was the highest at the Nano-film. In this experiment, tomatoes requiring high irradiation were better at the Nano film, while lettuce requiring low irradiation better at the Micro film.

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.