• Title/Summary/Keyword: doping material

Search Result 792, Processing Time 0.034 seconds

Selective Enhancement of the Sheet Resistance of Graphene Using Dielectrophoresis (유전영동 현상을 이용한 그래핀 면저항의 선택적 향상 연구)

  • Oh, Sooyeoun;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.253-257
    • /
    • 2017
  • Graphene is a monolayer carbon material which consists of $sp^2$ bonding between carbon atoms. Its excellent intrinsic properties allow graphene to be used in various research fields. Many researchers believe that graphene is suitable for electronic device materials due to its high electrical conductivity and carrier mobility. Through chemical doping, n- or p-type graphene can be obtained, and consequently graphene-based devices which have more comparable structure to common semiconductor-based devices can be fabricated. In our research, we introduced the dielectrophoresis process to the chemical doping step in order to improve the effect of chemical doping of graphene selectively. Under 10 kHz and $5V_{pp}$ (peak-to-peak voltage), doping was conducted and the Au nanoparticles were effectively formed, as well as aligned along the edges of graphene. Effects of the selective chemical doping on graphene were investigated through Raman spectroscopy and the change of its electrical properties were explored. We proposed the method to enhance the doping effect in local region of a graphene layer.

Analysis of phase formation behavior of YSZ-based composites according to rare earth and other oxide doping amounts (희토류 및 기타 산화물 Doping 양에 따른 YSZ 기반 복합소재의 상형성 거동 분석)

  • Choi, Yong Seok;Lee, Gye Won;Jeon, Chang Woo;Nahm, Sahn;Oh, Yoon Suk
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.368-375
    • /
    • 2022
  • YSZ (Yttria Stabilized Zirconia) is used as a thermal barrier coating material for gas turbines due to its low thermal conductivity and high fracture toughness. However, the operating temperature of the gas turbine is rising according to the market demand, and the problem that the coating layer of YSZ is peeled off due to the volume change due to the phase transformation at a high temperature of 1400℃ or higher is emerging. To solve this problem, various studies have been carried out to have phase stability, low thermal conductivity, and high fracture toughness in a high temperature environment of 1400℃ or higher by doping trivalent and tetravalent oxides to YSZ. In this study, the monoclinic phase formation behavior and crystallinity were comparatively analyzed according to the total doping amount of oxides by controlling the doping amounts of Sc2O3 and Gd2O3, which are trivalent oxides, and TiO2, which are tetravalent oxides, in YSZ. Through comparative analysis of monoclinic phase formation and crystallinity, the thermal conductivity of the thermal barrier coating layer according to the amount of doping was predicted.

Structural and Electrochemical Properties of Doped LiFe0.48Mn0.48Mg0.04PO4 as Cathode Material for Lithium ion Batteries

  • Jang, Donghyuk;Palanisamy, Kowsalya;Kim, Yunok;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.102-107
    • /
    • 2013
  • The electrochemical properties of Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ and pure $LiFe_{0.5}Mn_{0.5}PO_4$ olivine cathodes are examined and the lattice parameters are refined by Rietveld analysis. The calculated atomic parameters from the refinement show that $Mg^{2+}$ doping has a significant effect in the olivine $LiFeMnPO_4$ structure. The unit cell volume is 297.053(2) ${\AA}^3$ for pure $LiFe_{0.5}Mn_{0.5}PO_4$ and is decreased to 296.177(1) ${\AA}^3$ for Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample. The doping of $Mg^{2+}$ cation with atomic radius smaller than $Mn^{2+}$ and $Fe^{2+}$ ion induces longer Li-O bond length in $LiO_6$ octahedra of the olivine structure. The larger interstitial sites in $LiO_6$ octahedra facilitate the lithium ion migration and also enhance the diffusion kinetics of olivine cathode material. The $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample with larger Li-O bond length delivers higher discharge capacities and also notably increases the rate capability of the electrode.

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 (Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성)

  • Yang, Su-Bin;Yoo, Gi-Won;Jang, Byeong-Chan;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2014
  • In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

Improvement of Efficiency Varying Ratio in Hybrid White OLED (도핑 비율에 따른 하이브리드 백색 OLED의 효율 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.571-575
    • /
    • 2014
  • We synthesized new materials of $Zn(HPB)_2$ and Ir-complexes as blue or red emitting material. We fabricated white Organic Light Emitting Diodes (OLED) by using $Zn(HPB)_2$ for the blue emitting layer, Ir-complexes for the red emitting layer and $Alq_3$ for the green emitting layer. We fabricated white OLED by using double emitting layers of $Zn(HPB)_2$:Ir-complexes and $Alq_3$. The doping rate of Ir-complexes was varied, such as 0.2%, 0.4%, 0.6%, and 0.8%, respectively. When the doping rate of $Zn(HPB)_2$:Ir-complexes was 0.6%, white emission was achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission was (0.322, 0.312).

A novel red light-emitting material and the characteristics of OLEDs using the same as red dopant

  • Lim, Seung-Han;Park, Jung-Hyun;Seo, Ji-Hoon;Ryu, Gweon-Young;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1573-1576
    • /
    • 2007
  • ABCV-Py, a new red fluorescent material, in which two identical electron donor (dimethylamino group) and acceptor (cyano group) moieties are linked to two independent biphenyl groups which share the same core phenyl, has been synthesized for use in OLED application. Performance of red doped electroluminescent devices using ABCV-Py as dopant were measured with various host materials, $Alq_3$, CBP, DPVBi, and p-terphenyl. The performance of device with DPVBi host material was better than those with other host materials and high doping concentration could be applied on device with ABCV-Py as dopant.

  • PDF

nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Infrared Detection

  • Kim, Ha-Sul;Lee, Hun;Hwang, Je-Hwan;Lee, Sang-Jun;Klein, B.;Myers, S.;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.128.2-128.2
    • /
    • 2014
  • Long-wave infrared detectors using the type-II InAs/GaSb strained superlattice (T2SL) material system with the nBn structure were designed and fabricated. The band gap energy of the T2SL material was calculated as a function of the thickness of the InAs and GaSb layers by the Kronig-Penney model. Growth of the barrier material (Al0.2Ga0.8Sb) incorporated Te doping to reduce the dark current. The full width at half maximum (FWHM) of the 1st satellite superlattice peak from the X-ray diffraction was around 45 arc sec. The cutoff wavelength of the fabricated device was ${\sim}10.2{\mu}m$ (0.12eV) at 80 K while under an applied bias of -1.4V. The measured activation energy of the device was ~0.128 eV. The dark current density was shown to be $1.2{\times}10^{-5}A/cm^2$ at 80 K and with a bias -1.4 V. The responsivity was 1.9 A/W at $7.5{\mu}m$ at 80K and with a bias of -1.9V.

  • PDF

Effect of Dopping Conditions on a-Se Thin-Films : Microstructural and I-V Study (비정질 박막에 대한 도핑 조건의 영향 및 미세구조와 I-V 연구)

  • Park, S.K.;Park, J.K.;Kang, S.S.;Kong, H.K.;Kim, J.S.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.492-496
    • /
    • 2001
  • Due to their better photosensitivity in X-ray, the amorphous selenium based photoreceptor is widely used on the X-ray conversion materials. It was possible to control the charge carrier transport of amorphous selenium by suitably alloying a-Se with other elements(e,g. As, Cl). In this paper, We investigated dopants(As, Cl) composition rate to improve dark resistivity and transport properties of charge carrier in amorphous selenium using by direct X-ray conversion material. Alloying a-Se with As inhibits the recrystallization of a-Se but introduces undesirable deep hole traps. then doping with Cl(in the ppm range) compensates for the deep hole traps. We investigated their composition rate in various doping conditions and then obtained optimum dopant composition rate. The result was Se-As 0.3%-c] 30 ppm and X-ray Sensitivity was 0.57 pC/$pixel{\cdot}mR$ at $137{\mu}m{\times}137{\mu}m$ Pixel area.

  • PDF

A Study on the Luminous Properties of the White-light-emitting Organic LED with Two-wavelength using DPVBi/Alg3:Rubrene Structure (DPVBi/Alg3:Rubrene 구조를 사용한 2-파장 방식의 백색유기발광소자의 발광특성에 관한 연구)

  • 조재영;최성진;윤석범;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.616-621
    • /
    • 2003
  • The white-light-emitting organic LED with two-wavelength was fabricated using blue emitting material(DPVBi) and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The basic structure of white-light-emitting OLED was ITO/NPB(150$\AA$)/DPVBi(150$\AA$)/Alq$_3$:Rubrene(150$\AA$)/BCP(100$\AA$)/Alq$_3$(150$\AA$)/Al(600$\AA$). The changes of the CIE coordiante strongly depended on the doping concentration of Rubrene and the thickness of NPB layer. We obtained the white-light-emitting OLED close to the pure white color light and the CIE coordinate of the device was (0.315, 0.330) at applied voltage of 13V when the doping concentration of Rubrene was 0.5wt% and the thickness of NPB layer is 200$\AA$. At a current of 100mA/$\textrm{cm}^2$, the quantum efficiency was 0.35%.

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF