DOI QR코드

DOI QR Code

Analysis of phase formation behavior of YSZ-based composites according to rare earth and other oxide doping amounts

희토류 및 기타 산화물 Doping 양에 따른 YSZ 기반 복합소재의 상형성 거동 분석

  • Choi, Yong Seok (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center) ;
  • Lee, Gye Won (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center) ;
  • Jeon, Chang Woo (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Oh, Yoon Suk (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center)
  • 최용석 (한국세라믹기술원 이천분원, 엔지니어링소재센터) ;
  • 이계원 (한국세라믹기술원 이천분원, 엔지니어링소재센터) ;
  • 전창우 (한국세라믹기술원 이천분원, 엔지니어링소재센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 오윤석 (한국세라믹기술원 이천분원, 엔지니어링소재센터)
  • Received : 2022.11.07
  • Accepted : 2022.11.25
  • Published : 2022.12.31

Abstract

YSZ (Yttria Stabilized Zirconia) is used as a thermal barrier coating material for gas turbines due to its low thermal conductivity and high fracture toughness. However, the operating temperature of the gas turbine is rising according to the market demand, and the problem that the coating layer of YSZ is peeled off due to the volume change due to the phase transformation at a high temperature of 1400℃ or higher is emerging. To solve this problem, various studies have been carried out to have phase stability, low thermal conductivity, and high fracture toughness in a high temperature environment of 1400℃ or higher by doping trivalent and tetravalent oxides to YSZ. In this study, the monoclinic phase formation behavior and crystallinity were comparatively analyzed according to the total doping amount of oxides by controlling the doping amounts of Sc2O3 and Gd2O3, which are trivalent oxides, and TiO2, which are tetravalent oxides, in YSZ. Through comparative analysis of monoclinic phase formation and crystallinity, the thermal conductivity of the thermal barrier coating layer according to the amount of doping was predicted.

Keywords

Acknowledgement

본 논문은 산업통상자원부 소재부품기술개발-전략핵심소재 자립화 기술 개발 사업 (#20009895)의 연구지원으로 수행되었습니다.

References

  1. L. Xu, S. Bo, Y. Hongde, W. Lei, Evolution of rolls-royce air-cooled turbine blades and feature analysis, Procedia Eng., 99 (2015) 1482-1491. https://doi.org/10.1016/j.proeng.2014.12.689
  2. W. Beele, G. Marijnissen, A. V. Lieshout, The evolution of thermal barrier coating-status and upcoming solutions for today's key issues, Surf. Coat. Technol., 120 (1999) 61-67. https://doi.org/10.1016/S0257-8972(99)00342-4
  3. A. R. Miller, Thermal barrier coatings for aircraft engines: history and directions, J . Therm. Spray Technol., 6 (1997) 35-42. https://doi.org/10.1007/BF02646310
  4. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. S. Brings, O. Lavigne, J. M. Dorvaux, M. Poulain, R. Mevrel, M. Caliez, Some recent trends in research and technology of advanced thermal barrier coatings, Aerosp. Sci. Technol., 7 (2003) 73-80. https://doi.org/10.1016/S1270-9638(02)00003-2
  5. J. H. Perepezko, The hotter the engine, the better, Science 326 (2009) 1068-1069. https://doi.org/10.1126/science.1179327
  6. U. Schulz, K. Fritscher, M. Peters, EB-PVD Y2O3-and CeO2/Y2O3-stabilized zirconia thermal barrier coatings-crystal habit and phase composition, Surf. Coat. Technol., 82 (1996) 259-269. https://doi.org/10.1016/0257-8972(95)02727-0
  7. G. D. Girolamo, C. Blasi, M. Schioppa, L. Tapfer, Structure and thermal properties of heat-treated plasma sprayed ceria-yttria co-stabilized zirconia coatings, Ceram. Int., 36 (2010) 961-968. https://doi.org/10.1016/j.ceramint.2009.10.020
  8. B. Cortese, D. Caschera, T. Caro, G.M. Ingo, Micro-chemical and -morphological features of heat-treated plasma sprayed zirconia-based thermal barrier coatings, Thin Solid Films, 549 (2013) 321-329. https://doi.org/10.1016/j.tsf.2013.04.155
  9. Yu. A. Tamarin, E. B. Kachanov, Properties of electron-beam thermal barrier coatings, in: New processes and reliability of gas turbine engines [in Russian], Izd. Tsentr. Inst. Motorostr. Baranova, Moscow 7 (2008) 125-144.
  10. J. Singh, D. E. Wolfe, Architecture of thermal barrier coatings produced by electron beam-physical vapor deposition (EB-PVD), J. Mater. Sci., 37 (2002) 3261-3267. https://doi.org/10.1023/A:1016187101616
  11. M. Kibsey, J. Romualdez, X. Huang, R. Kearsey, Q. Yang, Mechanical properties of titania-doped yttria stabilized zirconia (TiYSZ) for use as thermal barrier coating (TBC), J. Eng. Gas Turbines Power, 133 (2011) 122101. https://doi.org/10.1115/1.4004125
  12. K. Muraleedharan, S. Jandhyala, S. B. Bhaduri, Identifiation of t'phase in ZrO2-7.5wt% Y2O3 Thermal-Barrier Coatings, J. Am. Ceram. Soc., 71 (1988) C-226.
  13. X. Huang, Effect of co-doping on microstructure, Thermal and mechanical properties of ternary zirconia-based thermal barrier coating materials, Turbo Expo: Power for Land, Sea, and Air, 48852 (2009) 711-719.
  14. W. Gregoire,V. Shklover,W. Steurer, S. in Bachegowda, H. P. Bossmann, Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns, J. Am. Ceram. Soc., 90 (2007) 2935-2940. https://doi.org/10.1111/j.1551-2916.2007.01785.x
  15. H. G. Scott, Phase relationships in the zirconia-yttria system, J. Mater. Sci., 10 (1975) 1527-1535. https://doi.org/10.1007/BF01031853
  16. S. A. Tsipas, Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings, J. Eur. Ceram. Soc., 30 (2010) 61-72. https://doi.org/10.1016/j.jeurceramsoc.2009.08.008
  17. A. Portinha, V. Teixeira, J. Carneiro, M. F. Costa, N. P. Barradas, A. D. Sequeira, Stabilization of ZrO2 PVD coatings with Gd2O3, Surf. Coat. Technol., 188 (2004) 107-115. https://doi.org/10.1016/j.surfcoat.2004.08.016
  18. F. Yang, X. Zhao, P. Xiao, The effects of temperature and composition on the thermal conductivities of [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions, Acta Mater., 60 (2012) 914-922. https://doi.org/10.1016/j.actamat.2011.10.030
  19. P. Sokolowski, S. Kozerski, L. Pawlowski, A. Ambroziak, The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings, Surf. Coat. Technol., 260 (2014) 97-106. https://doi.org/10.1016/j.surfcoat.2014.08.078
  20. C. Jerome, G. Laurent, A. V. Virkar, D. R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 9 (2009) 1901-1920.
  21. V. Celine, J. P. Bonino, F.Ansart, A. Barnabe, Structural study of metastable tetragonal YSZ powders produced via a sol-gel route, J. Alloys Compd., 452 (2008) 377-383. https://doi.org/10.1016/j.jallcom.2006.10.155
  22. R. A. Miller, J. L. Smialek, R. G. Garlick, Phase stability in plasma-sprayed, partially stabilized zirconia-yttria (1981).
  23. E. H. Kisi, C. J. Howard, Crystal structures of zirconia phases and their inter-relation, Key Eng. Mater.,153 (1998) 1-36. https://doi.org/10.4028/www.scientific.net/kem.153-154.1
  24. W. Fan, Y. Bai, Z. Z. Wang, J. W. Che, Y. Wang, W. Z. Tao, R. J. Wang, G. Y. Liang, Effect of point defects on the thermal conductivity of Sc2O3-Y2O3 co-stabilized tetragonal ZrO2 ceramic materials, J. Eur. Ceram. Soc., 39 (2019) 2389-2396. https://doi.org/10.1016/j.jeurceramsoc.2019.02.034
  25. R. D. Shannon, Acta Cryst., A32 (1976) 751. https://doi.org/10.1107/S0567739476001551
  26. E. K. KHLER and V. B. GLUSHKOVA, "Science of Ceramics", edited by G. H. Stewart (British Ceramic Society, UK, (1968) 233.