DOI QR코드

DOI QR Code

Phase formation and microstructural characteristics of ytterbium silicates coatings fabricated by plasma spraying with Ar/He gas compositions for environmental barrier coating applications

플라즈마용사로 증착된 환경차폐코팅 이터븀 실리케이트의 Ar/He 가스 조성에 따른 상형성 및 미세구조 특성

  • Choi, Jae-Hyeong (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Seongwon (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Ji-Yoo (Research Center of SewonHardfacing co., ltd.) ;
  • Moon, Hung Soo (Research Center of SewonHardfacing co., ltd.)
  • 최재형 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 김지유 ((주)세원하드페이싱 연구소) ;
  • 문흥수 ((주)세원하드페이싱 연구소)
  • Received : 2022.11.08
  • Accepted : 2022.12.14
  • Published : 2022.12.31

Abstract

Yb2Si2O7 has a coefficient of thermal expansion similar to that of the base material of SiC and has excellent corrosion resistance in a high-temperature oxidizing atmosphere including water vapor, so it is being studied as one of the materials for environmental barrier coatings (EBCs). In this study, Yb2Si2O7 powder granule is deposited using atmospheric plasma spraying (APS) with different Ar/He ratios. Phase formation and microstructural characteristics are investigated with the coated specimens. In the coating layer, the crystallinity decreased, and the amorphous content increased from an increase in the ratio of Ar. In addition, the various types of particles involved by local volatilization of Si according to the Ar/He ratios were identified.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (SiC fiber reinforced ceramic composite improved environmental performance developed ceramic coating layer, No. 20011237) funded by the Ministry of Trade, Industry & Energy (MOTIE).

References

  1. E. J. Opila, J. L. Smialek, R. C. Robinson, D. S. Fox, N. S. Jacobson, SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model, J. Am. Ceram. Soc., 82 (1999) 1826-1834. https://doi.org/10.1111/j.1151-2916.1999.tb02005.x
  2. K. N. Lee, Environmental barrier coatings for CMCs, ceramic matrix composites. N. P. Bansal, J. Lamon Ed., Wiley, New York (2015) 430.
  3. Y. Xu, X. Hu, F. Xu and K. Li, Rare earth silicate environmental barrier coatings: present status and prospective, Ceram. Int., 43 (2017) 5847-5855. https://doi.org/10.1016/j.ceramint.2017.01.153
  4. J. H. Choi, S. Kim, Fabrication and characterization of of ytterbium silicates for environmental barrier coating applications,(in Korean), J. Kor. Inst. Surf. Eng., 54 (2021) 331-339. https://doi.org/10.5695/JKISE.2021.54.6.331
  5. D. T. Martin, C. Bennett, T. Hussain, A review on environmental barrier coatings: history, current state of the art, J. Euro. Ceram. Soc., 41 (2021) 1747-1768. https://doi.org/10.1016/j.jeurceramsoc.2020.10.057
  6. E. Bakan, D. Marcano, D. Zhou, Y. J. Sohn, G. Mauer, R. Vassen, Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: A preliminary comparative study, J. Therm. Spray. Tech., 26 (2017) 1011-1024. https://doi.org/10.1007/s11666-017-0574-1
  7. R. Vassen, E. Bakan, C. Gatzen, S. Kim, D. E. Mack, O. Guillon, Environmental barrier coatings made by different thermal spray technologies, Coatings, 9 (2019) 784. https://doi.org/10.3390/coatings9120784
  8. E. H. Jordan, C. Jiang, M. Gell, The solution precursor plasma spray (SPPS) process: A review with Energy considerations, J. Therm. Spray Technol., 24 (7) (2015) 1153-1165. https://doi.org/10.1007/s11666-015-0272-9
  9. A. Keyvani, M. Bahamirian, A. Kobayashi, Effect of sintering rate on the porous microstructural, mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling, J. Alloys and Compd., 727 (2017) 1057-1066. https://doi.org/10.1016/j.jallcom.2017.08.184
  10. C. S. Kwon, S. M. Lee, Y. S. Oh, H. T. Kim, B. K. Jang, S. Kim, Structure and thermal conductivity of thermal barrier coatings in lanthanum/gadolinium zirconate system fabricated via suspension plasma spray(in Korean), J. Kor. Inst. Surf. Eng., 47 (2014) 316-320. https://doi.org/10.5695/JKISE.2014.47.6.316
  11. C. S. Kwon, S. Lee, S. M. Lee, Y. S. Oh, H. T. Kim, B. K. Jang, S. Kim, Fabrication and Characterization of La2Zr2O7/YSZ Double-Ceramic-Layer Thermal Barrier Coatings Fabricated by Suspension Plasma Spray(in Korean), J. Kor. Inst. Surf. Eng., 48 (2015) 315-321. https://doi.org/10.5695/JKISE.2015.48.6.315
  12. S. Lee, S. M. Lee, Y. S. Oh, H. T. Kim, S. Nahm, S. Kim, Fabrication and characteristics of thermal barrier coatings in the La2O3-Gd2O3-ZrO2 system by using suspension plasma spray with different suspension preparations(in Korean), J. Kor. Inst. Surf. Eng., 49 (2016) 595-603. https://doi.org/10.5695/JKISE.2016.49.6.595
  13. K. N. Lee, R. A. Miller, N. S. Jacobson, New generation of plasma-sprayed mullite coatings on silicon carbide, J. Am. Ceram. Soc., 78 (1995) 705-710. https://doi.org/10.1111/j.1151-2916.1995.tb08236.x
  14. C. M. Weyant, K. T. Faber, Processing-microstructure relationships for plasma-sprayed yttrium aluminum garnet, Surf. Coat. Technol., 202 (2008) 6081-6089. https://doi.org/10.1016/j.surfcoat.2008.07.008
  15. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, N. Hitchman, Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review, J. Therm. Spray Technol., 17 (2008) 199-213. https://doi.org/10.1007/s11666-007-9148-y
  16. R. S. Lima, B. M. H. Guerreiro, N. Curry, M. Leitner, K. Korner, Environmental, economical, and performance impacts of Ar-H2 and N2-H2 plasma-sprayed YSZ TBCs, J. Therm. Spray Technol., 29 (2020) 74-89. https://doi.org/10.1007/s11666-019-00955-0
  17. A. Dolmaire, E. Hartikainen, S. Goutier, E. Bechade, M. Vardelle, P. M. Geffroy, A. Joulia, Benefits of hydrogen in a segmented-anode plasma torch in suspension plasma spraying, J. Therm. Spray Technol., 30 (2021) 236-250. https://doi.org/10.1007/s11666-020-01134-2
  18. G. Mauer, R. Vassen, D. Stover, Preliminary study on the TriplexProTM-200 gun for atmospheric plasma spraying of yttria-stabilized zirconia, Surf. Coat. Technol., 202 (2008) 4374-4381. https://doi.org/10.1016/j.surfcoat.2008.04.012
  19. K. N. Lee, R. A. Miller, N. S. Jacobson, New generation of plasma-sprayed mullite coatings on silicon carbide, J. Am. Ceram. Soc., 78 (1995) 705-710. https://doi.org/10.1111/j.1151-2916.1995.tb08236.x
  20. E. Garcia, H. Lee, S. Sampath, Phase and microstructure evolution in plasma sprayed Yb2Si2O7 coatings, J. Euro. Ceram. Soc., 39 (2019) 1477-1486. https://doi.org/10.1016/j.jeurceramsoc.2018.11.018
  21. K. N. Lee, D. Zhu, R. S. Lima, Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): a tutorial paper, J. Therm. Spray Technol., 30 (2021) 40-58. https://doi.org/10.1007/s11666-021-01168-0
  22. V. Guipont, M. Espanol. F. Borit, N. Llorca-Isern, M. Jeandin, K. A. Khor, P. Cheang, High-pressure plasma spraying of hydroxyapatite powders, Mater. Sci. Eng. A, 325 (2002) 9-18. https://doi.org/10.1016/S0921-5093(01)01414-9