• Title/Summary/Keyword: domain decomposition methods

Search Result 98, Processing Time 0.023 seconds

Large-eddy simulation of channel flow using a spectral domain-decomposition grid-embedding technique (스펙트럴 영역분할 격자 삽입법을 이용한 채널유동의 큰 에디 모사)

  • Gang, Sang-Mo;Byeon, Do-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1030-1040
    • /
    • 1998
  • One of the main unresolved issues in large-eddy simulation(LES) of wall-bounded turbulent flows is the requirement of high spatial resolution in the near-wall region, especially in the spanwise direction. Such high resolution required in the near-wall region is generally used throughout the computational domain, making simulations of high Reynolds number, complex-geometry flows prohibitive. A grid-embedding strategy using a nonconforming spectral domain-decomposition method is proposed to address this limitation. This method provides an efficient way of clustering grid points in the near-wall region with spectral accuracy. LES of transitional and turbulent channel flow has been performed to evaluate the proposed grid-embedding technique. The computational domain is divided into three subdomains to resolve the near-wall regions in the spanwise direction. Spectral patching collocation methods are used for the grid-embedding and appropriate conditions are suggested for the interface matching. Results of LES using the grid-embedding strategy are promising compared to LES of global spectral method and direct numerical simulation. Overall, the results show that the spectral domain-decomposition grid-embedding technique provides an efficient method for resolving the near-wall region in LES of complex flows of engineering interest, allowing significant savings in the computational CPU and memory.

Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy

  • Cimellaro, Gian Paolo;De Stefano, Alessandro
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.231-247
    • /
    • 2014
  • This paper focuses on the dynamic behaviour of Mirandola City Hall (a XV century Renaissance Palace) that was severely damaged during May 2012 Emilia earthquake in Northern Italy. Experimental investigations have been carried out on this monumental building. Firstly, detailed investigations have been carried out to identify the identification of the geometry of the main constructional parts as well as the mechanical features of the constituting materials of the palace. Then, Ambient Vibration Tests (AVT) have been applied, for the detection of the main dynamic features. Three output-only identification methods have been compared: (i) the Frequency Domain Decomposition, (ii) the Random Decrement (RD) and the (iii) Eigensystem Realization Algorithm (ERA). The modal parameters of the Palace were difficult to be identified due to the severe structural damage; however the two bending modes in the perpendicular directions were identified. The comparison of the three experimental techniques showed a good agreement confirming the reliability of the three identification methods.

Torsional Damping Estimation of a Segmented Hull Model with Modal Coupling (모드 연성을 수반하는 분할 모형의 비틀림 감쇠비 추정)

  • Kim, Yooil;Park, Sung-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.482-493
    • /
    • 2016
  • The identification of modal damping of a segmented hull model with torsional response is difficult task due to the coupling of modal response. This is because the 1st and 2nd torsional vibration modes are closely spaced in frequency domain leading to the situation that the modal decomposition is difficult to achieve by simple band-pass filter. Present study applied several different modal decomposition methods to derive the damping ratio of different modes. The modal decomposition methods considered in this study are simple band-pass filter, Hilbert vibration decomposition, Wavelet transform and proper orthogonal decomposition. Coupled free decay signal obtained from the torsional hammering test on a segmented hull model was processed with four different methods and the derived damping ratios were compared with each other. Discussions also have been made on the pros and cons of the different methodologies.

Moving force identification from bending moment responses of bridge

  • Yu, Ling;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.151-170
    • /
    • 2002
  • Moving force identification is a very important inverse problem in structural dynamics. Most of the identification methods are eventually converted to a linear algebraic equation set. Different ways to solve the equation set may lead to solutions with completely different levels of accuracy. Based on the measured bending moment responses of the bridge made in laboratory, this paper presented the time domain method (TDM) and frequency-time domain method (FTDM) for identifying the two moving wheel loads of a vehicle moving across a bridge. Directly calculating pseudo-inverse (PI) matrix and using the singular value decomposition (SVD) technique are adopted as means for solving the over-determined system equation in the TDM and FTDM. The effects of bridge and vehicle parameters on the TDM and FTDM are also investigated. Assessment results show that the SVD technique can effectively improve identification accuracy when using the TDM and FTDM, particularly in the case of the FTDM. This improved accuracy makes the TDM and FTDM more feasible and acceptable as methods for moving force identification.

Fractal Image Compression Using QR Algorithm (QR 알고리즘을 이용한 프렉탈 영상압축)

  • Han, Kun-Hee;Kim, Tae-Ho;Jun, Byoung-Min
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.369-378
    • /
    • 2000
  • Conventional fractal image compression methods have many problems in searching time for matching domain block. Proposed method is an improved method of Fisher's Quadtree Decomposition in terms of time, compression ratio, and PSNR. This method determines range block in advance using QR algorithm. First, input image is partitioned to $4{\times}4$ range block and then recomposition is performed from bottom level to specified level. As a result, this proposed method achieves high encoding and decoding speed, high compression ratio, and high PSNR than Fisher's Quadtree Decomposition method.

  • PDF

A new coupling method of Element-Free Galerkin Method and Boundary Element Method for infinite domain problems in elasticity (무한탄성영역 해석을 위한 EFG와 BEM의 새로운 결함기법 개발)

  • 이상호;김명원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.575-582
    • /
    • 2002
  • A new coupling method of Element-Free Galerkin Method(EFGM) and Boundary Element Method(BEM) using the domain decomposition method is presented in this paper. This proposed methodology is that the problem domain is decomposed into sub-domains being modeled by the EFGM and BEM respectively and the respective EFGM and BEM domains share a partially overlapped region over an entire domain. Then, the each sub-domain is separately computed and the variables on common region are iteratively updated until converging. It is an important note that in the developed coupling method, there is no need to combine the coefficient matrices of EFGM and BEM sub-domains, in contrast with the other conventional coupling methods. In the first part of this paper, a theory of EFGM and BEM is summarized, and then a brief introduction of domain decomposition method is described. Then, a new coupling method is presented. Also, patch test and Some numerical examples are studied to verify stability, accuracy and efficiency of the proposed method, in which numerical performance of the method is compared with that of conventional method such as EFGM-BEM variational coupling method, EFGM and BEM.

  • PDF

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Modal parameters identification of heavy-haul railway RC bridges - experience acquired

  • Sampaio, Regina;Chan, Tommy H.T.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Caraj$\acute{a}$s railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.