• 제목/요약/키워드: divisors

검색결과 88건 처리시간 0.026초

STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS

  • HONG, CHAN YONG;KIM, NAM KYUN;LEE, YANG
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.663-683
    • /
    • 2015
  • In this note we study the structures of power-serieswise Armendariz rings and IFP rings when they are skewed by ring endomor-phisms (or automorphisms). We call such rings skew power-serieswise Armendariz rings and skew IFP rings, respectively. We also investigate relationships among them and construct necessary examples in the process. The results argued in this note can be extended to the ordinary ring theoretic properties of power-serieswise Armendariz rings, IFP rings, and near-related rings.

다변수 출력 함수에서 공통 논리식 추출 (A Boolean Logic Extraction for Multiple-level Logic Optimization)

  • 권오형
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권5호
    • /
    • pp.473-480
    • /
    • 2006
  • 본 논문에서는 여러 개의 출력단을 갖는 논리회로에서 공통식을 찾는 방법을 제안하였다. 각각의 출력단위로 2개의 큐브로 구성된 몫을 찾고, 이 몫들 간의 쌍을 이용해서 부울 공통식을 찾는 방법을 보였다. 실험 결과로 2개의 큐브만을 이용한 공통식 산출만으로 전체 논리회로의 크기를 줄이는 데 효과가 있음을 SIS1.2 결과와 비교하여 보였다.

  • PDF

소인수분해정리와 유클리드의 원론

  • 강윤수
    • 한국수학사학회지
    • /
    • 제17권1호
    • /
    • pp.33-42
    • /
    • 2004
  • In this paper, we identify the essential ideas of Fundamental Theorem of Arithmetic(FTA). Then, we compare these ideas with several theorems of Euclid's Elements to investigate whether the essential ideas of FTA are contained in Elements or not. From this, we have the following conclusion: Even though Elements doesn't contain FTA explicitly, it contains all of the essential ideas of FTA. Finally, we assert two reasons why Greeks couldn't mention FTA explicitly. First, they oriented geometrically, and so they understood the concept of 'divide' as 'metric'. So they might have difficulty to find the divisor of the given number and the divisor of the divisor continuously. Second, they have limit to use notation in Mathematics. So they couldn't represent the given composite number as multiplication of all of its prime divisors.

  • PDF

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin;Wang, Dengyin;Zhou, Jinming
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.519-532
    • /
    • 2016
  • The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF

A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS

  • Kim, Hwankoo;Kwon, Tae In;Rhee, Min Surp
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1851-1861
    • /
    • 2014
  • We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.

A GENERALIZATION OF ARMENDARIZ AND NI PROPERTIES

  • Li, Dan;Piao, Zhelin;Yun, Sang Jo
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.741-750
    • /
    • 2018
  • Antoine showed that the properties of Armendariz and NI are independent of each other. The study of Armendariz and NI rings has been doing important roles in the research of zero-divisors in noncommutative ring theory. In this article we concern a new class of rings which generalizes both Armendariz and NI rings. The structure of such sort of ring is investigated in relation with near concepts and ordinary ring extensions. Necessary examples are examined in the procedure.

On the $Z_p$-extensions over $Q(sqrt{m})$

  • Kim, Jae-Moon
    • 대한수학회논문집
    • /
    • 제13권2호
    • /
    • pp.233-242
    • /
    • 1998
  • Let $k = Q(\sqrt{m})$ be a real quadratic field. In this paper, the following theorems on p-divisibility of the class number h of k are studied for each prime pp. Theorem 1. If the discriminant of k has at least three distinct prime divisors, then 2 divides h. Theorem 2. If an odd prime p divides h, then p divides $B_{a,\chi\omega^{-1}}$, where $\chi$ is the nontrivial character of k, and $\omega$ is the Teichmuller character for pp. Theorem 3. Let $h_n$ be the class number of $k_n$, the nth layer of the $Z_p$-extension $k_\infty$ of k. If p does not divide $B_{a,\chi\omega^{-1}}$, then $p \notmid h_n$ for all $n \geq 0$.

  • PDF

ON v-MAROT MORI RINGS AND C-RINGS

  • Geroldinger, Alfred;Ramacher, Sebastian;Reinhart, Andreas
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.1-21
    • /
    • 2015
  • C-domains are defined via class semigroups, and every C-domain is a Mori domain with nonzero conductor whose complete integral closure is a Krull domain with finite class group. In order to extend the concept of C-domains to rings with zero divisors, we study v-Marot rings as generalizations of ordinary Marot rings and investigate their theory of regular divisorial ideals. Based on this we establish a generalization of a result well-known for integral domains. Let R be a v-Marot Mori ring, $\hat{R}$ its complete integral closure, and suppose that the conductor f = (R : $\hat{R}$) is regular. If the residue class ring R/f and the class group C($\hat{R}$) are both finite, then R is a C-ring. Moreover, we study both v-Marot rings and C-rings under various ring extensions.

CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS

  • Kim, Aeran;Kim, Daeyeoul;Yan, Li
    • 대한수학회지
    • /
    • 제50권2호
    • /
    • pp.331-360
    • /
    • 2013
  • Let ${\sigma}_s(N)$ denote the sum of the sth powers of the positive divisors of a positive integer N and let $\tilde{\sigma}_s(N)={\sum}_{d|N}(-1)^{d-1}d^s$ with $d$, N, and s positive integers. Hahn [12] proved that $$16\sum_{k. In this paper, we give a generalization of Hahn's result. Furthermore, we find the formula ${\sum}_{k=1}^{N-1}\tilde{\sigma}_1(2^{n-m}k)\tilde{\sigma}_3(2^nN-2^nk)$ for $m(0{\leq}m{\leq}n)$.