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MEROMORPHIC FUNCTIONS,
DIVISORS, AND PROJECTIVE CURVES:
AN INTRODUCTORY SURVEY

KICHOON YANG

1. Introduction: an overview

The subject matter of this survey has to do with holomorphic maps
from a compact Riemann surface to projective space, which are also
called algebraic curves; the theory we survey lies at the crossroads
of function theory, projective geometry, and ¢onmmutative algebra (al-
though we should mention that the present survey de-emphasizes the
algebraic aspect). Algebraic curves have beer vigorously and contin-
uously investigated since the time of Riemarn. The reasons for the
preoccupation with algebraic curves amongst ‘nathematicians perhaps
have to do with-other than the nsual reason, namely, the herd mentality
prompting us to follow the leads of a few grea. pioncering mathemati-
cians in the field-the fact that algebraic curves possess a certain sunple
unity together with a rich and complex struct-are. From a differential-
topological standpoint algebraic curves are quite sinple as they are
neatly parameterized by a single discrete invariant. the genus. Even
the possible complex structures of a fixed genus curve afford a fairly
complete description. Yet there are a multitude of diverse perspectives
(algebraic. function theoretic, and geometric) often roalescing to yield
a spectacular result.

The author’s personal journey into algebraic curves began a few
vears ago when he was working on a problem i1t minimal surface theory
[Y] : it turned out that the solution to Bob Osserman’s problem of
immersing a given punctured compact Riemann surface into R* as a
complete minimal surface depended on our ability to manufacture a
meromorphic function with a preseribed polar divisor. It would not be
an exaggeration to say that algebraic curves ere responsible for many
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an inspiration in other branches of mathematics. And the author’s
main motivation for writing this survey, other than self-education, is
to share the excitement and beauty of algebraic curves with an audience
larger than that consisting of the experts.

We begin with a fixed compact Riemann surface M = M, of genus
9. A meromorphic function on M is, by definition, a holomorphic map

f*M—P =CuU{x}.

Tradition dictates that f(M) # {oc}. The set of all meromorphic
functions on M will be denoted by Hol (M, P'). Identifying C with the
constant functions on M we include C in Hol (M,P'). A fancier way
to write the set of meromorphic functions on M is tc write

H® M, M*) = Hol (M,P")\{0},

where M* — M denote the sheaf of germs of not identically zero
meromorphic functions on M.

Why study meromorphic functions? On a compact Riemann surface
M the maximum principle for holomorphic functions prohibits any non-
constant holomorphic function. We are thus led to study meromorphic
functions on M, and niore generally, holomorphic maps M — P". The
totality of projective realizations of a fixed compact Riemann surface
M turns out to have a variety structure; a careful study of this variety
structure not only makes the nature of M transparent but also enriches
our understanding of the set of all compact Riemann surfaces sharing
the same genus.

A foundational result as regards the general structure of Hol (M, P”
1s the Douady-Kuranishi Theorem. For a comp ex manifold W,
the set S(W) of all compact complex submanifolds of W can be made
into a complex space, called the Douady space. (This space is universal
in a suitable sense.)

Roughly speaking, a complex space is a Hausdorff topological space
that locally looks like an analytic subset of a complex domain; in par-
ticular, a nonsingular complex space is a complex manifold. Now let
N; and N3 be compact complex manifolds and put

Hol (:Vy, N2) = {holomorphic maps N; — N, }.
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By identifying f € Hol{ Ny, N;) with its graph in Ny x N; we re-
gard Hol (N, N3) as an open subspace of S(N; x N;), hence, making
Hol (Ny, N;) into a complex space. The Douady topology on Hol (Ny,
N3) turns out to coincide with the compact-open topology.

A holomorphic map M -- P” is said to be degenerate if the image lies
in a lower dimeusional projective subspace. We exclude the degenerate
curves from our consideration as otherwise they would appear in a
redundant manner, thereby complicating the exposition.

Given a projective curve M — P its degree is simply the number of
intersection between the curve and a generic hyperplane P7~! C P". In
particular, the degree of a meromorphic function is the number of times
the function takes on a generic value. We, tlerefore, have a natural
stratification

Hol (M, P") = | | Hola(M,P"),
d>1

where Holg(M,P") consists of nondegenerate degree d curves. It is
not difficult to show that each Holg(M.P") is open and closed in
Hol(M,P7).

We have thus narrowed our task to understanding the complex space
Holy(M,P"). Our next trimming process is t¢ divide Holy(M,P7) by
the holomorphic automorphism group Aut(P") = PGL(r + 1). After
all, two curves in P" related by a projective automorphism can be
brought together merely by a change of coordinates. The next logical
step would be to mod out the automorphisn group of M. But we
do not do so for the following reason: when Aut () is not compact,
for example, Aut (P!), the quotient Holg(M,P")/(Aut (P") x Aut (M))
is not Hausdorff. Moreover, when the genus ; > 2. by a theorem of
Schwarz the automorphism group Aut (M) is finite: hence, we are not
gaining a great deal by the additional quotient process. We can now
give the first formulation of our problem.

Problem 1. Given integers d > 1, r > 1, and a compact Riemann
surface M of genus ¢, give an explicit descript-on of the space

Holy( M, P")/Aut(P").

An overriding observation in our investigation is that a projective
curve is determined by a linear series of divsors up to a projective
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transformation. In a simpler vein, a meromorphic function is deter-
mined by its zero and polar divisors up to scalar multiplication. This
observation, which is embodied in the fundamental correspondence the-
orem stated below, becomes all the more remarkable once it is seen
what a simple object a divisor on a compact Riemann surface is.

DEFINITION. A divisor D on a compact Riemann surface M is a
finite integral sum of points p; € M. We write

D =XYap;,, a;€Z.

Divisors occur naturally as the zeros and poles counted with multi-
plicity of meromorphic functions. Given a meromorpaic function f on
M, its divisor, denoted by (f), is defined to be its zero divisor (i.e., the
zeros, each counted with multiplicity) minus its polar divisor. Suppose
we have two meromorphic functions f and f sharing the same divisor.
Then the quotient f/f is a nowhere vanishing holomorphic function,
hence a constanr. On the other hand, as we shall sce in section 2 a
divisor is the zero or the polar divisor of a meromorphic function if
and only if it is integral and the complete linear series it defines has
no base points. Thus the totality of meromorphic functions affords an
elegant description in terms of divisors.

Two divisors D and D are said to be linearly ecuivalent to each
other if their difference is a principal divisor, meaning the divisor of
a meromorphic function. Given a adivisor D the set of all integral
divisors (i.c., the coefficients a, > 0) linearly equivalent to it, called
the complete linear series of D and denoted by |D], is naturally a
projective space. A projective subspace of a |D] is called a linear series
on M. The degree of a linear series is, by definiticn, the degree of
a divisor iu it, where the degree of a divisor is simply the sum of its
coeflicients. Note that the degree of a principal divisor must be zero
by the equidistrivution theorem for meromorphic functions, hence the
degree of a linear series is well-defined. The set of all lincar series on
M with a fixed dimension r and degree d is denoted by G = GH(M),
and an eleinent .n it is denoted by ¢}. An importart observation to
make is that a linear series g7 on M defines a holomorphic map

@ M\B(g)) — (g7)" =P, prs H,,
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where G(g}) is the set of points common to all divisors, called the
base locus of g7, in g}. Given any point p ¢ M\B(g}) the set of all
divisors in g} containing p forms a hyperplane H, in the projective
space g; = P".

The fundamental correspondence theorem. Let ¢ be a base-
point-free linear series on M. Then the map & : M — P7, defined up
to the choice of an identification (¢})* = P7, is a nondegenerate degree
d projective curve. Conversely, let f : M — P" be a nondegenerate
degree d curve. Then the set of all hyperplan- sections on M, i.c., the
divisors coming from intersecting f(M) with hyperplanes in P, is a
linear series of dimension r degree d without a base point. Moreover,
any two such projective curves related by an automorphism of P” define
the same linear series.

Let Fj(M) C G(M) consists of linear seiies with base points. It
turns out that this set is negligibly small. For example, GL(P') is a
complex space of dimension (r +1)(d—r) and FJ(IP'} is a codimension
r closed complex subspace. (In fact, GL(IP') is naturally identified with
the Grassmann manifold of projective r-planes in P, and Fj(P') is a
codimension r subvariety.) At any rate, the dimension of GL{M) is
unaffected by cutting ont the closed complex subspace Fj(M). We
have arrived at the second formulation of our problem.

Problem 2. Give an explicit description o the set GL(M)\F;(M).

The following pages contain solutions, albeit decidedly partial, to
Problems 1 and 2. In section 2 we lay a foundation for what is to
follow: the Riemann-Roch theorem gives a relationship between the
degree and the dimension of a linear series, which is precise when the
degree is large compared with the genus; Abel’s theorem yields a well-
behaved fibration from the space of divisors (o that of line bundles) to
the Jacobian variety, allowing us to take advan age of the abelian group
structure of the Jacobian variety. Section 3 contains a fairly complete
solution to Problems 1 and 2 for the case r = 1. In section 3 we give a
two-step description of the space of degree d meromorphic functions on
a fixed compact Riemann surface: Firstly, we map Holg(M,P!) to the
Jacobian variety by taking the polar divisor; we then describe the image
and the fiber of this map. The last section contains an exposition,
mostly without proofs, of the famous Brill-Noether theorem, due to



574 Kichoon Yang

Brill-Noether, Severi, Kempf, Kleiman-Laksov, and Griffiths-Harris.
To be more precise, we discuss the

Dimension Theorem. For a general Riemann surface M of genus
g, the complex space Holy(M,P")/Aut(P") has dimension p(g,r,d),
where
plg.rd)=g-—(r+1)(g—d+r)

is the Brill-Noether number.

In the above theorem it is agreed that when p is negative the set
Holg(M,P7)/Aut(P") is empty-this, incidentally, is the part proved by
Griffiths and Harris. The existence implication for p > 0, in fact, holds
for every Riemann surface of genus ¢ with the understanding that the
dimension could be larger than p for certain surfaces. All we do in
section 4 is to sketch a proof of this existence implication.

We now talk a little about what is not covered in this survey. In
this survey we are interested in holomorphic maps from a fixed compact
Riemann surface M to P of a fixed degree d. If one varies the Riemann
surface M, then the resulting object is, more or less. what is known
as the Hilbert scheme, denoted by Hy 4. Thus our survey has to do
with describing the general fiber of the map

Hag,r = My,

where M, is the moduli of all compact Riemann surfaces of genus
g. By now there are several different ways to view M, (Teichmiiller,
Schottky, and Deligne-Mumford), and we do not entertain the moduli
question in this survey (see [H] for a masterful, albeit advanced, account
of the moduli problem). Another interesting and important subject we
do not delve into is that of non-general curves, e.g., hyperelliptic and
trigonal curves (sce [K] and references cited therein). We will be quite
content with grappling with a description of Hola(M, ") for a general
Riemann surface M.

Nearly everything in this survey is a well-known result, at least
to an expert. The book [ACGH] gives an authoritative account the
Brill-Noether theory; the book [N] gives an expert account of the de-
formation techniques for studying the Douady-Kurarishi space. Yet
an introductory survey such as this, the author felt, would serve the
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important purpose of introducing this exceedingly beautiful subject
matter to a larger audience-after all, we have tried to keep the prereq-
uisttes at a minimum while maintaining a consistent persepective.

2. Foundational material: the Riemann-Roch Theorem and
Abel’s Theorem

Holomorphic line bundles on a compact Riemaun surface provide,
at the least, a convenient and unifying language in the study of di-
visors. So we begin this section with a discussion of the relationship
between line bundles and divisors, which then leads to a discussion of
the Riemann-Roch theorem.

Let Pic (M) denote the set of all line bundles on M, which forms a
group under the tensor product. Pic (M) 1s called the Picard group of
M. Note that the inverse of a line bundle L is given by its dual L* since
L ¢ L™ is the trivial buudle. Another descript:on of Pic (M) is Pic (M)
as the Cech cohomology group H'(M, 0*), where (O* denotes the sheaf
of germs of nowhere vanishing holomorphic functions on M: To see
this one needs first to observe that transition functions {gas} of a line
bundle L — M relative to an open cover f = {U,} of M define a Cech
I-coeyle € ZY(N(U),O"), where N(U) is the nerve of U; then apply a
direct limit argument. With the identification Pic (M) = H' (M, O*)
in mind we will often write

L I L' - [‘ ‘+, Ll‘ L,* e -—L.

To make the relationship between line bundles and divisors clear it
is helpful to view divisors in sheaf-theoretic terms as well. For this we
take a divisor D and write

D= E(l,'p,' - ijq]‘ = D+ - DM,

where the p;’s and ¢;’s are distinet points and a; > 0, b; > 0. Given
an open cover U = {U,} of M the divisor D) is given by local data
{fa € M*(U,}}. where M*(U,) is the set of meromorphic functions
on U,: the zeros of f, are given by D7 restricted to U, and the poles
of f, are given by D™ restricted to I/,. Clearly, on an overlap U, N U,
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the quotient f,/fs is a nonvanishing holomorphic function. We have,
therefore, arrived at the identification

Div(M) = HY(M. M*]O*),

where Div (M) denotes the group of all divisors on M. We are now
able to define the homomorphism

Div(M) > HY(M,0*), D= {fa} Lp = {gas = fa/fs}

It is easy to see that the kernel of this homomorphism consists of
principal divisors, and we obtain a monomorphism

Div(M)/ ~— HYM,0*), [D]w Lo.

We shall see shortly that this map is, in fact, an epimorphism, allowing
us the identification

Div(M)/ ~= HY(M,0"), [D]=Lp.

The holomorphic sections of a line bundle L -+ M is denoted by
HO(L), and we will let h°(L) denote its dimension. The holomorphic
cotangent bundle, also called the canonical bundle, will be denoted by
K — M. Given a line bundle L its degree can be defined as the integral

/ (L), (L) = the Chern class of L.
M

Another method. which is more useful in our setting, of finding the
degree of a line bundle is to take the degree of a divisor representing it.
The famous Riemann-Roch theorem then gives a relationship between
the dimension of H%(L) and the degree of L.

The Riemann-Roch theorem for line bundles. Let L be a line
bundle on a genus ¢ Riemann surface M. Then

WLy 1= deg L —g+h*"(K®L).

Using the Riemann-Roch theorem we can now see that every line
bundle L — M comes from a divisor: For any point p = M we can find
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an integer n such that the line bundle L [np] ([up] denotes the line
bundle assoicated with the divisor np) admits a nontrivial holomor-
phic section-take n to be large and use the Riemann-Roch theorem.
This shows that L has a nontrivial meromorphic section £; hence, L is
associated to a divisor, namely, the divisor o £.

Given a divisor D = D% — D~ ¢ Div(M) there arises the complex
vector space

LiD)={fe H (M, M"):(f)> -D}uU{0}.

A nonzero element of L(D) is a meromorphic function whose zero di-
visor is at least D~ and whose polar divisor is at most D*. Fix a
meromorphic section sg of the line bundle L;, = [D] — M. This gives
rise to an isomorphism

H([D)) — L{(D), u+— /sq.

(A minor but technically important observat.on here is that the quo-
tient of any two meromorphic sections of a lin> bundle is a well-defined
meromorphic function on M. We can also make the identification
soniewhat more natural by choosing s¢ so that its divisor is D.) For
example, when D is integral (mmeaning that I'™ = ) we may think of
H°([D]) as meromorphic functions on M whose polar divisors are at
most D,

The complete linear series of D is, by defirition,
[Dj={D">0:D' ~L}.
The sets | D] and the projective space P(L( D)) are naturally identified

via

D'«

D!+ the line through f in L{D),

where f is the meromorphic function satisfying D+ ( f) = D'. We thus
obtain an identification [D| = P(L(D)).

The sets (D} and P(H'[D]) can be directly identified as follows: A

divisor D' in | D] corresponds to the line of hclomorphic sections

Ay 04 )eC},
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where the zero divisor of n € H°(|D]) is D".
By way of notation we put

r(D) = dim {D]|,
i(D) = h(K & [-D]).

The integer i( D) is called the index of specialty of D and will play an
important role in our later analysis. We can now restate the Riemann-
Roch theorem in divisor terms.

The Riemann-Roch theorem for divisors. Let D be any divisor
on a genus ¢ Riemann surface M. Then

H(D) = deg D — g+ i(D).

Noting that LiD) = 0 for a negative degree divisor D we can easily
calculate the dimension r(D) in extreme degree ranges. If d denotes
the degree of the divisor D, then

(D) {-1. if d < 0,
T 1) =
d-g¢g, ifd>29g-2

with the usual convention that the empty set has a negative dimension.

We now want to talk about the fundamental correspondence theo-
rem giving a description of holomorphic maps in term of linear series.
Let L = [D] be a line bundle on M and consider « basc-point-free
linear series g C |D|. Its affinization is given by a (r -+ 1)-dimensional
vector subspace A C H%([D]). Pick a basis 1g,- -+ 1, of A. Observing
that a point of M lies in the common zero locus of the 7,’s if and only
if it is a base point of g/, we see that the holomorphic map

S(gh): M —~P". prnolp), . na(1)]

is well-defined. Another choice of a basis for A would have the effect of
replacing ® by Ao®, where A is an automorphism of P". Since the 7;’s
form a basis it is clear that the iinage ®(g])(M) C P" is nondegenerate.
It is also easy to sce that the curve ®(g7)(M) intcrsects a generic
hyperplane P"~' C P” exactly d times.
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Conversely, consider a nondegenerate degree d curve f : M — P".
A hyperplane section on M is, by definition, the pullback of a hyper-
plane divisor on P". To put it another way, a hyperplane section D on
M is the intersection of f(M) with a hyperplane in P™ counted with
multiplicity. Thus the holomorphic curve f gives rise to a linear series,
namely
{D € Div(M): D is a hyperplaie section }.

By construction, this linear series is a ¢}; moreover. ®(¢g7) = f with a
suitable choice of coordinates, namely the original coordinates used in
giving f.

By way of notation we set

M) = {gson MY, FJ(M) = {gy's with base points }.

Holg( M.P") = {nondegenerate curves in P" of degree d}.

The fundamental correspondence theorem then states that
GLUMN\F](M) 2 Holg(M.P"), Aut (P").

Let Z be a canonical divisor on M. A canonical divisor is, by def-
inition, the divisor of a meromorphic 1-form on M. In particular, if
f € HO( M. M*), then its differential df is a meromorphic 1-form and
its divisor (df) is a canonical divisor. Considering the Laurent expan-
sions of f near its poles and ramification points and then applying
the Riemann-Hurwitz formula one sees easily that the degree of (df)
is 2¢ — 2. In fact, any two canonical divisors are linearly equivalent to
each other, hence the degree of any canonical divisor is 2¢ — 2. The
canonical linear series on M. usually denotel by [K], consists of all
integral divisors linearly equivalent to a canonical divisor. Thus

|K| =P(H'(K)),

where K is the canonical bundle on M. A theorem of Hodge states
that
HY(K)==CY,

where ¢ 18 the genus of M.
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The canonical map. Let us assume that ¢ > 2 so that the canon-
ical series || of M is at least a pencil, meaning that its dimension is
at least one. Given any linear series |D| there is a simple criterion to
see if a point p € M is a base point. One always has

r(D)-r(D—p)=0orl,

and this number is zero exactly when p is a hase point of |D|. Now the
Riemann-Roch theorem tells us that

(K@ [-p))=g-1,

and from this we can conclude that the canonical series is base-point-
free. The canonical map is then the holomorphic map given by

O(IK|): M — P91,

which is determined up to Aut (P?~!). Suppose now that M does not
carry a g1, i.e., G3(M) = 0. Then the Riemann-Roch theorem can be
used to show that the canonical map is an embedding, giving a god-
given projective realization of the Riemann surface M. The Riemann
surface M is said to be hyperelliptic if G3(M) # 0. In such a case it
is well-known that the canonical map is a ramified two-sheeted cover
of the rational normal curve P! in P9~!. At any rate, the hyperelliptic
surfaces are quite special and far better understood than the general
Riemann surfaces. We will see later that the only gg:,—_l.z on M is the

canonical series, that is to say, (}"2";_12(]\/[) is the singleton {|A[}.

Suppose we have a divisor D = Zp;, where the p;’s are all distinct.
Given an embedding ¢ : M — P" we set

Sw.p = the span of the points ¥(p;) C F".

Recalling that (D) is nothing but the number of inlependent holo-
morphic differentials w with (w) > D we see that

D)=¢g-~1- dim S, p,

where ¢ : M -» P97 denotes the canonical map. Combining this with
the Riemann-Roch theorem we obtain
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The Riemann-Roch theorem for the canonical map. Let
D = Ep,; be a divisor on a Riemann surface of genus g > 2. Then

r(D)=d-1- dim S, p.

Rephrasing, r(D) is the number of independen: linear relations amongst
the points p(p,) on the canonical curve.

REMARK. The above formulation of the Riemann-Roch theorem is
also known as the geometric version [ACGH, p. 12].

The Riemann-Roch theorem for the canonical map allows us to de-
termine »( D) in the degree range 0 < ¢ < 2¢g — 2, assuming that D is
a general integral divisor.

L d-1, if 0<a<y,
dim S, p = v .
g1, if ¢g<¢<2g--2.

It follows that for a general integral D.

0, if0<d<y,
r(D) = .
d—yg, ifg<d<2g-2.

To put it another way, the “exceptional” diviscrs lie in the degree range
0 < d < 2¢ — 2; they are exactly those divisors whose points counted
with multiplicity fail to be independent on the canonical image. It is
worth noting that a canonical divisor is exceptional in this sense since
a general integral divisor of degree 2g — 2 would have r(D) = g - 2. We
will have a lot more to say about exceptional divisors in later sections.

The other key ingredient-one key ingredient being the Riemann-
Roch theorem-in the theory of divisors is Abel’s theorem and the ac-
company:ing theory of the Jacobian variety. Tle underlying philosophy
here is to map everything to the Jacobian variety .J( M) and exploit the
fact that J(M ) is an abelian complex Lie group. By now a classic refer-
ence on the Jacobian variety exemplifying this philosophy is [Gu]. Our
discussion will focus upon the object W7 < J- M) which parametrizes
the set of all complete linear series of degree ¢ and dimension at least
r. Regrettably, we will have to leave unexplored many exciting aspects
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of the theory, including the theta divisor and Riemann’s theorem, and
the Schottky problem.

Given «, 8 € Hi(M,Z) we let §(a, §) denote their intersection num-
ber. In termns of their Poincaré duals E(,, s € H)p(M) the intersection
number is given by the integral

a.ﬂ)—_-/ EuNEg €D
M

A basis (eg4), 1 < a < 2¢g, of Hi{M,Z) is called a canonical homology
basis, or a symplectic basis, if the intersection matrix (1(eq, €5)) is given

by
- 0 I
Jy = [—Ig 0].

By Poincaré duality and using the fact that each de Raam cohomology
class contains a unique harmonic representative we can find a basis
(¢H), 1 <1< g, of H(K) such that the ¢ x 2¢g matrix (P!) = (fea )
is given by

(P} = (I,,I1),

where I is symmetric with a positive definite imaginary part. This
fact, in turn, can be used to show that the Jacobian variety of M
(defined below) satisfies so called the Riemann conditions, showing
that it is a projective manifold.

A vector in €Y of the form

/<ci>, o € Hy(M.Z),

is called a period of M with respect to the basis (¢*). So the set of all
periods of M is exactly the lattice L generated by the 2¢ columns of
P = (I,,II), and the Jacobian variety of M is defined to be

J(M)=C?/L.

Given a canonical homology basis (€4)1<q<2, the condition

[o=u 1<iisza

]
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uniquely specifies the basis ((*) of H’(K) due to Poincaré duality.
From this we see that the Jacobian variety J( M) depends only on the
choice of a canonical homology basis. On the other hand, from the
intersection matrix J, we see that any two canonical homology bases
e, € are related by

ée=e-X, X €Spy?2Z),
where Sp(g,Z) is the subgroup of SL(2¢,Z) g:ven by
Sp(9.2) ={X € GL(29,Z): *'X - J,- X = J,}.

The Siegel upper half space of genus g is defined to be Hy = {Z €
GL(g,C): Z is symmetric with a positive definite imaginary part } so
that the last 2¢ columns [T of a period matrix (I, I]) define a point
of H,. The action of Sp(g,Z) on the set of canonical homology bases
of M induces in a natural way an action on H,. To be precise, if we
write

A B
X = [C‘ D] € Splg,Z),

then
X(Z)y=(C+D2Z)-(A+Bz)'. Z¢ H,.

From this we surmise that there is a well-defired map

7 M, = {compact Riemann surfaces of gevus g} — Hy/Sp(g,2Z),
M v 3(M) = II (modulo the action of Sp(g,Z)).

We can now state the famous

Torelli theorem. Compact Riemann surfaces M and M’ of genus
g are conformally equivalent to each other if and only if j(M) = j(M').

What is disheartening in Torelli’s theorem is the fact that the map
J 1s not surjective when the genus ¢ is larger than 3. The problem of
explicitly identifying the image of the map j is generally refered to as
the Schottky problem (see [AD] or [S] for a recent discussion of this
problem. )
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We are now in a position to give the Jacobi map
w: M- JM)

We will need to fix a base point pg € M. Then for any p € M we
consider the vector of integrals given by

P P
’<_/p”gl"” ’/pogy) e QY.

The ambiguity involved in writing the line integral fp’; ¢* disappears
once we pass to the quotient space, CY modulo the period lattice. Thus

P P ,
o(p) = t(/ SR / Cg) (modulo the periods) € J(M).

Po Po

Extending this definition linearly we define
@ Div(M) — J(M).

It is interesting to note that once restricted to the subgroup Div’ (M) C
Div (M) consisting of degree zero divisors the Jacobi map no longer
depends on the choice of a base point py.

Let z',. - . 29 be the Euclidean coordinates on C9 and note that the
dz"’s are well-defined holomorphic differentials on the complex torus
C9/L = J(M). Then since the complete linear series || is a projective
space, the pullbacks ¢*dz* must vanish on |D|, showing that the Jacobi
map Divi(,AW ) — J{M) must be constant on the complete linear series
|D|. Abel's theorem says more.

Abel’s theorem. Let D, D, € Divi(]\/f). Theun D, is linearly
equivalent to D, if and only if ¢(Dy) = o(Dy).

Abel’s theorem tells us exactly that the fibers of the Jacobi map
@ :Divi(M) - M

are complete linear series. Let Pic?(M) C H'(M,©*) denote the sub-
set of the Picard group consisting of degree d line bundles. Note that
Pic4(M) is identified with Divd (M) modulo linear equivalence via

Ly = [D] € PicY(M) — |D| € Divi(M)/ ~.
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Abel’s theorem amounts to the statement that the induced map
PicY(M) — J(M), [D]w— (D)

is well-defined and injective. As for the surjectivity we have the

Jacobi inversion theorem. The Jacoti map ¢ : Divi(]bl:) -
J(M) is onto when the degree d is at least the genus g.

Noting that J(P') is a point, we suppose he genus to be positive.
Consider the Jacobi map

v M- J(M)=C/5.
We will show that this map is immersive by saowing that its lifting to

C9, denoted by ¢, is. Let p € M be arbitrary and also let z be a local
coordinate centered at p. We then have

2

P(2) = "(¥' (), ¥(2)) € C¥.

P vy 3 ) 1
Pi(z) = / ¢t / ni(z)dz, T =n'dz.
Po 0

So diy*/dz = #' and ¥ is non-immersive at : if and only if the 5’s
all vanish at z, i.e., the ¢''s all vanish at z. But then z would be a
base point of the canonical linear series, whih is not possible. This
shows that @|ar is a holomorphic immersion. Now suppose for some
P,q € M we had p(p) = p(¢). Then @(p--¢q) = 0 and by Abel’s
theorem p — ¢ would be a principal divisor, meaning that there is a
degree one meromorphic function on M which would force M = P! It
follows that ¢ embeds M into J(M ).

We now consider the Jacobi map defined on the degree d integral
divisors

where

v DivE(M) — J(M)

Take a generic point U = py + -+ + pg € Divi(]\l) with the p;’s
all distinct. Then for local coordinates z; centered at p; on M the
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collection (z1,-- - , z4) coordinatizes Divi(M). So for £ = ¥z; near D

we have
6¢ _a;, . 6 Tk 1 , 'Z .g.
azv(E)—gz—i-(E)—a—“(zk/ s [ 0)

(& Sy = (&
—(dz,’ ’dz,)(E)_ (dz,-)(E)'
Thus the Jacobian matrix of the map ¢ at the point £ is given by

k

(%)(E), 1<i<d, 1<j<g.

Changing the local coordinate z; has the effect of clanging the i-th
column of the above Jacobian matrix by a nonzero factor. Pick p;
such that (!(py) # 0 and subtract a suitable multiple of ¢' from (*)
making (*(p;) = 0 for i > 1. Proceeding this way we can make the
Jacobian matrix triangular. The following result, which is essentially
the Jacobi inversion theorem stated above, now follows easily:

dim Wy(M)=d, ifd < g;

Wa(M) = J(M), ifd > g,
where W, = go(Divi(]W)) C J(M). Note that Abel’s theorem tells
us that Wy 2= PicY(M) parametrizes the set of all complete linear
series of degree d. By the proper mapping theorem. Wy, being the

holomorphic image of the compact complex manifold Divi.(M ), 1s an
analytic irreducible subvariety of J(M). Moreover.

Wq =W, + -+ W, (d times)

since @(py + -+ pa) = £(p1) + - - + @(pa)-
By way of notation we put

C; :::{D € DlVi(M) : T(D) Z '['}’
Wi =p(Cg)C Wy, d21, 720

Thus an important consequence of our discussion in th:s section is that
the Jacobi map induces a fiberation

CANCIT - Wi\wH
with standard fiber P".



Meromorphic functions, divisors, and projective curves 587
3. Meromorphic functions on a compact Riemann surface

Fix a compact Riemann surface M of genus g. For a positive integer
d we let

R4(M) = Hola(M,P') C Hol(M,P")

denote the set of degree d meromorphic functions on M. Observe that
Ry (M) is empty unless M = P! since any degree one meromorphic
function would give a homeomorphism M — P!. On the other hand,
considering a non-Weierstrass point we see that Rz(M) is nonempty
whenever d > g. Since this observation will resurface in a more general
setting we will not go into a discussion of Weierstrass points. Suffice
it to say that all but finitely many points on a Riemann surface are
non-Weilerstrass points, and at a non-Weierstrass point p there is a
meromorphic function with polar divisor d- p for any given d > ¢. The
interested reader may consult [FK, pp. 76-86) ‘or a detailed discussion
of this.

Before embarking on the structural study of Rg(M) we would like
to mention a motivational theme for the present discussion, namely
the Mittag-Lefller problem: The problem is to find a meromorphic
function whose polar divisor is specified beforehand. This problem
arises in many different contexts in applicatior. A favorite example of
the author [Y] comes from the theory of compiete minimal surfaces in
R? with finite total curvature. The famous Chern-Osserman theorem
states that if § C R® is a complete minimal surface, then S is of
finite total curvature if and only if it is algcbraic, meaning that S
15 a finitely punctured compact Riemann surfice and the Gauss map
S — P! is holomorphically extended to the compact Riemann surface
M containing S. A crucial observation is that the Gauss map has
poles on the puncture set ¥ = M\S; consequently, the problem of
mimimally (and conformally) immersing a comapact Riemann surface
M with punctures at a specified set ¥ depends strongly on our ability
to come up with meromorphic functions with poles at X.

The basic fact regarding the Mittag-Lefler problem is that the
higher the degree of the given divisor the easier it is to find the mero-
morphic functions, which is related to the previously established fact
that when the degree is large there are no special divisors. In fact,
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we will see a little later that when the degree is larger than 2¢g, any
integral divisor is the polar divisor of a meromorphic function.

Let us begin our study of Rq(M) with a simple but instructive ex-
ample.

EXAMPLE. Consider a meromorphic function f of degree d > 0 on
the extended plane CU {00} = P!. The function f is, by definition, a
holomorphic map

f:CU {0} =P =CU{co}.

In terms of the inhomogeneous coordinate z = z;/z, on the domain
and the inhomogeneous coordinate on the range w := wy/wy we can
write the map f as

sow = Q2)/P(2), oo lim Q()/P(2).
where the polynomials P and ¢ have no common fac ors and
max(deg P, deg Q) = d.
Homogenization of = and w leads to
filz0,21] = [fo(z0, 21), f1(20, 21)],
where

d d—1 d
fo =apzf +ayzf 'z 4+ - +aqz), and

fl :bo.‘ﬁ'g + b] 23‘121 + -4 bdZii

are such that the resultant polynomial R(ap,: - ,aq,bu, - ,bg) # 0. If
follows that there is a (biholomorphic) identification

Rd(P]) - P2d+]\A,

f and [(10,"' ,(Ld,bo,"' 7bd] € P2d+1s

where A is the hypersurface in P4+ given by the resultant polynormial.
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We now proceed to show that for any compact Riemann surface
M of genus g the dimension of Rg(M) is 2d — g + 1, provided that
d > g. We begin with the elementary but important observation that
a meromorphic function on M is determined, up to multiplication by
a nonzero scalar, by its divisor

(f) = (Flo = (oo

To see this one merely notes that the ratio of any two meromorphic
functions with the same divisor must be a nowhere zero holomorphic
function on M, hence a constant. Observe, moreover, that the divisors
(f)o and (f)oc have no points in common. Conversely, if D; and D,
are any two integral divisors that are linearly equivalent to each other
with no points in common, then there is a meromorphic function f
with (f) = Dy - Dsj: this is a restatement of Abel’s theorem. Thus it
is natural to view R4(M)/C* in divisor theoretic terms.

Recall that Divi( M), being biholomorphic to the d-fold symmetric
product of M, 1s a d-dimensional compact complex manifold. Consider
the map

@ : Divi (M) x Divi(M) — J(M), (Dy,D;) ¢(D1) - p(Ds).

So the image of ® is given by Wy — W, C J(M). FOr D € Divi(]\l)
put
Yp={D} x¢o Na), r=u(D)e JIM).

If d > g, then by Jacobi Inversion ¢ ~'(r) is (¢/ — ¢)-dimensional. Now

®~(0) = | Yp.
D

and, more importantly,
RM)/C* = 37 (0)\ 3,

where ¥ is the irreducible hypersurface (try to prove this) of Divi (M)
xDivi(]\/I) given by

L = {(Dy, Dy) s supp(Dy) N supp(Dy) # 0.
But since the dimension of Yp is d — ¢ it follows that
dim Ry(M)=2d - g+ L.

A little more work yields the following
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THEOREM. Ford > ¢, R4(M) is a complex manifold of dimension
2d —g+1.

The following result is thematic.

PROPOSITION. Let D be an integral divisor. Then the complete
linear series | D| has no base points if and only if D is the polar divisor
of a meromorphic function.

Proof. If D = (f)so for a meromorphic function f, then (f)o € |D|
and D have no points in common. Conversely, assume that |D| is
base-point-free. We first consider the case where |D| is a pencil. Then
D can be realized as the polar divisor of the meromorphic function
®|p; : M — P' by suitably choosing a basis of H°([D)), where ®|p
is the holomorphic curve associated to |D|. Suppose now that the
dimension of |D| is larger than one, and consider the nondegenerate
holomorphic map

®p: M —-PY, N =dim|D|

Every element of |D| is a hyperplane section. In particular, D comes
from a hyperplane H ¢ PV. Choose another hyperplane H' such that
H' does not intersect H N ®p;(M). Consider the pencil of divisors on
M given by

(Dy = XoH +MH' : A=A, \] €P' .

Here, \gH + A H' stands for the hyperplane section coming from the
hyperplane

MF(zo, - ,2n) + MiGlz0,- -+ y2n) =10,

where the linear forms F and G define H and H' respectively. We
then note that for any point p € M there is a unique A(p) € P! such
that p € support(D,), meaning that the assignment f : p — A(p) is a
holomorphic map. We can now take D = (f)oc- 3

It is convenient to introduce the notation

Bpfi(ﬂf) ={D ¢ Divi(}b[) . |D| is base-point-free} < Cy.
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PROPOSITION. Let D be any integral divisor of degree d > 2g. Then
there is a meromorphic function whose polar divisor (or zero divisor)
is D, that is to say.

Bpfi (M) = Divi(M), d >2¢.

Proof. Let D € Divi(M) with d > 2¢. Then by Riemann-Roch,
r(D) =d — g. On the other hand, we know that for any point p € M,

r(D)—r(D—-p)=0or 1

moreover. (D) — r(D — p) = 0 if and only if » is a base point of |D|.
But, again by Riemann-Roch

D -—-p)=(d-1)—g

and the result follows. J
When d < 2g the situation is more complicated-a generic divisor of
degree less than 2g is not the polar divisor of & meromorphic function.
Another interesting situation is that of Div;iyﬁz(j\/l). Here we put

Caniq"z(]W) ={D & Div‘_‘};"—z(AM) : D is a canonical divisor}.

Given D ¢ Divigﬁz(M‘) we let D' denote a divisor residual to D,
meaning that
D'=2Z-D

for some canonical divisor Z. Then the degree of D' is zero, and
according to whether or not D' is principal we have the dimension of
(D)= 0 or —1. Since I’ is principal if and oaly if D is canonical we
see that

(D) =g~ 1, if D is canonical;
r(D)= ¢ -2, if D is not canonical.

Thus D € Can®"*(M) if and only if [D] is a g:;’g"_fz. We have thus
L.

Since the canonical

-1 . .
shown that G3 ", consists of the singleton
linear series is base-point-free

Can "% (M) C Bpfiy! (11).
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Now consider the Jacobi map
2 1 DIv2ITH (M) — J(M).

Letting x € J(M) denote the point corresponding to the canonical
series we have

¢ (K) = Carnig-z(M), dim Canigq(‘M) == g— L.

Note, in particular, that a generic integral divisor of degree 2¢g — 2 is
not canonical.

We now turn to the space Rg(M)/Aut (P!), whick turns out to be
more appropriate than Rq(M)/C* in its capacity for generalization to
a holomorphic curve setting. Consider the map

a:RyM) - Divi(M) - J(M), f+ D= (fror #(D).
An easily verified fact is that for any f € Ry(M) and A € Aut(P')
the divisors (f)e. and (@ o f) are linearly equivalent (see below for a
proof). From this we surmise that the map « descends to a map
& Rg(M)/Aut (P') — J(M).
Note also that r € J(M)is in the image of o if and only if the complete

linear series ¢~ !(z) is base-point-free by an earlier proposition. And
we are interested in examining the set

a(Rg M) N (WAWHY) Cc J(M), r> 1

This set parameterized the set of complete linear series of degree d and
dimension exactly r that are base-point-free. That is to say,

a(Rg(M)) N (WI\W]*!) = {complete g}’s without base points }.
The gap subvariety is defined by

7= Wi+ W, CJ(M),
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where “+” denotes the group sum in J(M). Since the W;'s are additive
we see that F; C W]. For any = € I/Vdr+l and p € M we put

Arp={E € Divi" Y (M) E' + pe o (2)}.
Note that the linear series
Arp+p={Ec ¢ (x):peupp(E)},

that is to say. A, , + p consists of all divisors in ¢~ !(z) supporting p.
Now the dimension of »~!(z) is at least r + 1. So, the dimension of
A p is at least r as A, , + p is at least a hyperplane in ¢~ !(z). This
shows that

r=p(A ) +p(p) e Wi, + W, = FJ.

Since z was an arbitrary element of W' we liave shown that W' ¢
F7. So
Wit C Fj Cc Wy
We can now give a satisfactory description of the set of base-point-
free complete ¢7’s, at least at the level of the Jacobian variety.

THEOREM. The set of base-point-free g]}’s is parameterized, via the
Jacobi map, by WI\F] C J(M). In other words,

a{ Ra(M)) N (WH\WIHY) = W)\ F].

Proof. We know that WI\F] C W'dr\W'dr+1 and it 1s enough to show
that

FIAWIH = {z e W)\W]™ . o7 (2) is a ¢} with a base point}.

Certainly if + € WJ\W]T' is such that »~'(z) has a base point p,
then we can write r =y + y; for some y € W, _, and y; = o(p) € W;.
To prove the other containment take an arbitrary r € FJ\W] +!1 By
definition, we can find y € W7_, and y; € W) such that = = y + y;.
Put p= ¢~ Yy,) € M. Then

p )= Ny +p={E"+p: E' e Di"{" (M) n o~ (y)}.
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Since ¢~ *(z) has dimension exactly r, the dimension of ™ (y), too, is
7. But this means that p is a base point of ¢ ~!(z). O

Consequently, we obtain a natural stratification of the image of a,
namely,

W Ra(M)) = | J WI\F}.

r>l

Our next task then is to understand the totality of meromorphic
function lying over a single point x € J(M). We begin this with an
elementary

LEMMA. Let f € Rq(M), and A € Aut(P'). Then the divisors
(f)oo and (A o f} are linearly equivalent.

Proof. Think of P! as CU {oo}. Then Ao f can be written as

aw + b
cw +d

M w=f(z)eCr e C,

and in case w = oc,a(w) = My %, where det 3) # 0. From
this the result follows rather easily. For example, taking the generic

case ac # 0 we have

(f)f)o - ("T——a/c o ‘4 o f)Uv

where T_g .t w v w - afc But
(T-—a/r oAdo f)(l ~ (T—a/(‘, cAo f)oo ~ (AO f)cxw

where ~ denotes the lincar equivalence. O

Let D = (f)oo, where f € Rg( M), and consider the complete linear
series

DI =P, r=r(D)

We will let L denote the projective line in | D| through the points (f)oo
and (f)o. Let A be a fixed but otherwise arbitrary automorphism of
P!, and put

f=Aofe€Ry(M).
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Then the above lemma tells us that the projective line L passing

through (f)o and (f)oo is also contained in |[}. We claim that L = L.
To begin with L corresponds to a 2-plane in L(D),

L =P (span {1, f}).
Likewise,
L =P (span {1, f}).

But
. a b
P (span {1, f}) = P(span {1, g;:-;:—g})
=P (span {cf +d,af +b}) =P (span {1, f}).

The next observation is that given any two points Dy # Dy € L
there is an automorphism A € Aut (P') such that Dy = (Ao f)o and
Dy = (Ao f)oe. Tosee thislet D;,1 < i <2, correspond to the 2-plane

span {a;f + b;} C L(L).
Then we can take
A(w) = (ayw + by)/(azw -+ by).

COROLLARY. Letz € W} and consider a projective line L in ¢~ '(z).
Then

either LxLCY, or(LxL)(E=ALxL,

where A is the diagonal set and £ C Div.(M) x Divi(M) is the

“exceptional” set introduced earlier.

Proof. Suppose (D;.Dy) € (L x L)\E. Then (D, D,) € &-1(0),
meaning that D, — Dj is a principal divisor. O
We note that generically we will have (L > L)NX = Apx.
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OBSERVATION. L is base-point-free if and only if (L x L)N ¥ = A.

Proof. Suppose (L x L)NE = A and take (Dy,D,) € (L x L)\A.
Then (Dy,D;) € $71(0). So there is a meromorphic function f with
(f)o = Dy and (f)oe = Dy. Thus supp(D;) Nsupp(D;) = @, showing
that L could not possibly have a base point. Conversely, assume that
L is base-point-free. Suppose we had (Dy,D,) € (1. x L)N T with
D, # D,. Then there is a point p € M common to both D, and D,.
But then p would be in the base locus of the linear pencil

L =P{aD, +bD, :a,b € C).

But we have seen earlier that this pencil is exactly L. a

Let £ € W}, and also let G(1,971(z)) denote the Grassmann man-
ifold of projective lines in p~!(z). We have a Zariski open subset of
G(1, 9~ !(z)) given by

Z(1,07 (2)) = {L € G107 Y (e): (LxL)NT = A}.

Moreover, this set consists exactly of base-point-free pencils in ¢ 7! (x).
We can now given the main result of this section.

THEOREM. Assume that ¢~ '(z) has no base points. Then the
Zariski open set Z(1,97(x)) C G(1, ¢~ 1(x)) parametrizes the projec-
tive equivalence classes of meromorphic functions lying over x € J(M).
To put it another way, there is an isomorphism

U:a Na)C Ry(M)/Aut(PY) — Z(1,p ! z)).

Proof. Let f € Rq(M) be so chosen that (f)e € ¢~ x). To f we
associate the line Ly € Z(1,¢ 7! (x)) through (f)o and { f). Then the
assignment

fea (@) m L

projects down to give a map.

¥ : f (modulo Aut (PY)) € a7 Y(z) — Lye Z(1,07 ().
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This map is seen to be well-defined from the earlier observation that
L = L. To see that the map is surjective, take a pencil L C ¢ (z)
that is base-point-free. Then for any (D1, D) € (L x L)\A we know
that Dy — D, is a principal divisor, say (f). Thus L comes from f via
¥. Now suppose Ly = L. To show that our assingment 1s injective
we need to show that f = f’ (modulo Aut (P')). But any two point on
the line Ly = Ly come from Ao f for some A, showing that f' = Ao f
for some A € Aut (P'). i

Assume that the degree is large, say d > g, and consider the pro-
jections

&1 Re(M)/Aut (P') — W{™9 = J(M),
¢ : Divi (M) — J(M).

The Jacobi map, then, is a fibration with standard fiber P4-9. More-
over, the preceding theorem tells us that the map &, too, is nearly
a fibration: the fiber over a point € W} is a generic subset of the
Grassmannian G(1,P?79).

We now proceed to give another, somewhat more useful, description
of the fiber @ !(r), which may be considered as a dual description to
the one given in the above theorem. But we need first to review the
notion of a projection centered at a subspace, which occurs frequently
in Algebraic Geometry. Let II; be an n-plane in PV, and also let 1],
be any (N — n — 1)-plane not intersecting {I;. Then the projection
centered at the subspace I, is the holomorphic map given by

7 P\II, — I, pe 11, 51, NI,

where I1, ;;, denotes the (n + 1)-plane through p and II;. Since the
set of all (n+ 1)-planes in PV containing II; is naturally a PN-"1 we
can also define the projection simply as

i IP’N\II] PVl pes 10,1,
Coming back to z € W} C J(M), put

r=dim e }z)>1
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If r = 1, then & '(z) is either empty or a singleton for dimensional
reasons. So let us assume that r > 1, ie., r € W2. Assuming that
z lies in the image of 4-meaning that ¢ ~!(z) has no base points-the
associated holomorphic curve ®,(M) is a nondegenerate degree d curve
in P". It is natural to consider ¢ ~!(z) as the dual space P™* to this P7
as every divisor in ¢~ !(r) is the pullback by @, of a hyperplane in P".
A line L in ¢~ !() then cooresponds to a (r — 2)-sulispace S, of P".
Moreover, we have

LEMMA. The condition (L x L)NY = A dualizes to the condition

‘I)X(M) ns; = 0.

Proof. Recall the canonical identification
P(Hom (C™*',C)) = P™, [0] — Ker(6).
Soif Ly g is a line in P™ through the hyperplanes «, /3 in P7, then
Sp=anNpCP.

So the condition that L = L, g be base-point-free means that the
hyperplane sections a and # have no points in common, meaning that
a N 3 does not intersect the curve ®,(M). a

Consequently, the projection centered at § = S, defines a mero-
morphic function

rs: B, (M) — P
We define a Zariski open set Z of G(r — 2,P") by
Z; ={SeG(r-2,P"):®,(M)NS =}

so that ZF = Z(1,p '(r) = P™). We can now restate the above
theorem as

THEOREM. Suppose r € W2 with ¢~!(z) base-poiut-free. Then

a Y x)=Zr,  f (mod Aut(P')) — Sy=51,.
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Moreover, f is obtained as the composition
Ts, 0P, M — P — P!

Again for d > 2¢g we are saying that the fiber at a point z of the
projection

G : Ra(M)/Aut (P') — J(M)

is a generic subset Z} of the Grassmannian G(r — 2,P" = @~ Nx)*).
In addtion, this time, we are giving a rather explicit prescription for
writing down the meromorphic functions in o~ }(z) in terms of ®, and
certain projections PT — P!

Take M = P! so that J(M) is a point. P1t [0.1] = co € P!, and
consider the divisor D = d - 0o € Divd (P'). We then have

L(D) = span {1,z, - ,zd},

where by z' we mean the meromorphic function [1, 2] — [1,z%]. The
holomorphic curve @p, : P! — P? is thus given by

1.z = [1,5,2% - ,2%, oo 0,---,0,1].

The image C = ®p|(P') is called the rational normal curve. Then for
d>2,

Ra(PY)/Aut (P = Z* = {S € G(d-2.P%): SNC =8}
In particular, Ry(P')/Aut (P') is a P? minus a conic. Recalling that

Ry(P') is a P® minus the resultant hypersurface we have the following
intriguing

COROLLARY. There is a PGL(2)-principal fibration
P\V — P*\C,

where V is a quartic hypersurface and C is a conic curve.
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4. The Brill-Noether number and the dimension theorem

We saw already the identification Holy (M, P")/Aut (PT) = GO\ F},
where G consists of linear series, complete or not, of degree d and
dimension exactly r, and the subvariety FJ consists of such linear series
with base points. On the other hand, we saw that e(CY) = W] C
J(M) parametrizes the space of complete linear series of degree d and
dimension at least 7. And we have a fair understanding of the structure
of WJ with the aid of such theorems as the Riemann-Roch theorem and
Abel’s theorem, assuming that d is large compared with the genus. In
this section we will talk about W7 in the lower degree range, discussing
Clifford’s theoremn and the Brill-Noether number along the way. But
before doing this we would like to mention one imporsant fact we will
use without proof. That is, the fact that G7 is obrained from W7
via a blow-up process (in fact, G7 is called the canoaical blow-up of
W ). This blow-up coustruction is somewhat involved in terms of the
machinery required, and is discussed in detail in [ACGH, chapters 2
and 4]. Suffice it to say that W} and G} are isomorphic complex spaces
outside a small set, and their dimensions coincide.

Again we begin with a motivational example. Take M = P'. Then
since the Jacobian variety is a singleton we see that any two integral
divisors of degree d are linearly equivalent to each other, i.c.,

Divi(P!) = |d - oo].

As before we will think of |d- oo as the dual space P?* to the projective
space P¢ in which the associated holomorphic curve ®4.o0((P') lies.

Now
Gy = G(r,|d - oo]),

and a brute force calculation shows that
codim Fj = r.
Thus we have
Holq(P',P7)/Aut (P") = G(r, P*N\W,

where W is a codimension r subvariety. This example exhibits the
unplesant phenomenon of the moduli space not being compact. On the
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other hand, it also indicates that the moduli space is nearly compact
so that it can be compactified in a nice way.
We can be more explicit in our description of Holy(P!,P7). Put

Z(r,P™ = |d-oo|) = {L € G(r.|d-o0|) : L is bese-point-free} = G5\ Fy.

This is a Zariski open subset of the Grassmannian Gj;. (Recall that
when r = 1, the base-point-free condition is exactly the condition (L x
L)NE = A so that our notations are consistent.) Given an r-plane L €
Z(r, P4*) let S, denote the (d—r — 1)-plane it P? dual to it. Then the
condition that L be base-point-free translates into the condition that
S = S not intersect the rational normal curve Cy = @ld,oo|(ll”1) c P
so that we have a well-defined projection

7L =7ng:CYC P\S, — P".
All this is sumnarized by the identification

Z(r,|d - co|) = Holg(P', P")/Aut (P7),

L mr 0 @Id,ool.
THEOREM. Any nondegenerate holomorphic curve P! — P” of de-

gree d arises as the rational normal curve in P* followed by the projec-
tion centered at a generic subspace of codimension r + 1.

Coming back to the general case let M be any Riemann surface of
genus ¢, and recall

Cy={DeDivi(M):r(D)>r}.
The basic observation is that the Jacobi map g:ves rise to a P"-fibration
TA\CTT S WIAWT
Moreover, since C;t! and W ™! are subvarieties we have

r+dim Wi =r + dim G = lim .
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Let us look at the easy case, namely, the case d > 2¢9. We then know
that
r(D)=d-g, D eDivi(M)

in particular, r(D) is a constant. Moreover,
Cit =0, witeti =y
so that we obtain a P4~ 9-fibration
@:Cy% =Divi (M) - W9 = J(M).
Thus
dimC;=d=g+(d—g), dm Wi 9=g. (1)

What we would like to do is to generalize the dimension calculation
(1) to the case d < 2¢g — 1. The first difficulty one runs into here is
that r(D) is no longer a constant. However, an upper bound on r(D)
is easily found.

Clifford’s Theorem. Let D € Div4 (M) with d < 2¢g — 1. Then
r(D) <d/2.

We will give a proof following [ACGH, p. 108]. If i(0) = 0, then the
result follows easily from the Riemann-Roch theorem. So we assume
that :(D) > 0. A useful observation to make is the following : 7(D) > n
if and only if there is a divisor in |D| containing any n given points.
As a consequence, we have for any two effective divisors D and D',

r(D+D"Y>r(D)+r(D"):

given r(D) + r(D') points of M we can find E € |D containing the
first r(D) and E' € |D’| containing the remaining r(D’) points so that
E + E' € |D + D’| contains the given set of points. Now since D is
assumed to be special we may find an integral divisor D' such that
D + D' is a canonical divisor. Since (D) = r(D') + 1, we then obtain

r(D)+r(D")Y<r(D+D')=g—-1,
MD)—r(D)Y=d—-g+1,
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and the Clifford inequality follows.

It turns out, however, that the Clifford upper bound is rather crude,
at least for divisors on a general Riemann surface. Indeed if D is an
integral divisor of degree < 2¢g ~ 1 lying on a general Riemann surface
of genus g, then

rdy=r*+r(g+1—d)—d<0.

Note that the graph of r = r(d) in the rd-plane is a parabola lying
strictly below the straight line r = d/2 in the degree range 0 < d <
2g - 1. The condition that r(d) < 0 is exactly the condition that
plg.7,d) = 0.

Let C7? be as in the above, where we no longer assume that d > 2g.
d ) ~ £
We can now state the

Existence Theorem. Every component of (7} C Divi(ﬂ/l) has
dimension at least p + r, assuming that p > 0
We will sketch a proof of the above theorem following [ACGH,
pp-159-160]. Let
D=3Xp € Div‘i(z\«l).

and suppose that z is a local coordinate on A defined in an open set
containing the points py, -, ps. We can then write

Glz)=miz)dz, 1<1<y,
where the (s are a basis for HO(K ). Consider the g x d matrix

Gilpl. o, Gi(pa) miz(p )y, -, m(z(pa))
J(D) = : = :
‘:g(l’l)- Ty Cg(Pd) Tlg(z(f) ), Ty 7Ig(3(Pd))

Now suppose that the p,’s supporting D are all distinct, and put
= the rank of the above matrix.

Then since 1( D) is the number of independent holomorphic differentials
vanishing at the poiunts p; we have

D)+ =g.
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On the other hand, by the Riemnann-Roch theorem
(D)=r(D)-g+d.
It follows that
r(D)>rifandonly if § <d—r.

We thus have a local description of the subvareity C} C Divi(M ) near
a generic point. Namely, near a generic D the subvariety ('] is realized
as the common zero locus of the (d —r + 1) x (d — r 4+ 1) minors of the
matrix J (D). This linear algebraic description of C] will allows us to
calculate a lower bound on the dimension.

Digression: Determinantal varieties. In what follows we will
give a calculation showing that the dimension of the variety consisting
of m x n matrices of rank at most k is k(m 4+ n — &). Along the way
we will also indicate how G may be realized as a blow-up of WJ.
To aid the reader, who may wish to consult [ACGH, chapters 2 and
4] to learn more about this material, we will stick to the notations in
[ACGH]. Let M (i, 1) denote the projectivized space of m « n complex
matrices, which can be identified with P™* !, For 0 < k < min(m,n)
we denote by My C M(m, n) the subvariety of matrices of rank at most
k: My is called the k-1h generic determinatal subvariety. Set

My = {{A. W) e Min,n) x Gn —k,n): A(W) = 0).

It is not hard to see that the projection My — G(n - k,n) makes My
into a holomorphic vector bundle of rank mk over the Grassmannian
G(n—k,n). In particular, M is a smooth connected complex manifold
of dimension k(n: + n ~ k). Under the projection

7w M(imn)xGn—kn)— Mm,n

M, gets mapped properly onto My; by the proper niapping theorem
and the connectedness of My it then follows that My is an irreducible
algebraic subvariety of M(m,n). Now let A € M;\M)_, be arbi-
trary. Then the fiber of 7 over A4 is the singleton (4, Ker A) € J\ﬁlk C
M(m,n)x G(n —k.n). Since My\M_; is a generic snbset of My this
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shows that M'k is a desingularization of My (in fact, it can be shown
that the singular locus of My is exactly My_,). In particular,

dim My = dim Mg = k(m + n - k).

Let E,F — X be holomorphic vector bundles of rank n and m
respectively, over the complex space X. Consider a holomorphic bundle
map

w: E— F.
Locally the map ¢ is given by an m x n matrix A, of holomorphic
functions. So ¢ amounts locally to a holomorphic map

Ao U CX — M{m,r).

@ -

Put Uy = A;‘(A[k) and define a subvariety Xi() C X by the pre-
scription
Xilp)NU = Uy.

Thus
Xi(p) ={p€ X : rank (A, ) < k}.

Xi(p) is called the k-th determinantal variety associated with . By
construction either Xy(yp) is empty or its codimension is at most that
of My, i.e.,

codim Xi(p) < (m — k)(n - k).

Put
Xk(p ={(e,W):r € Xp(@)hWeGN -k E)WC Ker Ao}
CG(n -k, E),

where G(n — k, E) is the Grassmann bundle of (n — k)-planes in E.
Under the projection

Gn—-kE)— X
Xk(go) gets mapped to Xy(p). In fact, for an open set U ¢ X
. k{go) N W“](U) =U x A{k

Xi(p) is called the canonical blow-up of Xy(2). Note that when the
base space X is smooth. so is Xi(p)
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REMARK. The variety W] can be made into a determinagtal variety
in X =Wy C J(M) [ACGH, p. 177], and when this is done one can
show that W) = GJ.

Proof of the Existence Theorem. Since () is given by the
simultaneous vanishing of every (d —r + 1) x (d — r + 1) minor of a
d x ¢ matrix of holomorphic functions its codimension may not exceed

(d—(d=r)) (¢ —(d—-7r))=7r-(¢+d+7) i
We now know that for any Riemann surface of genis ¢
dim G}, > plyg,d,r).

In fact, the equality holds for a general Riemann suiface. Moreover,
Griffiths and Harris [GH] showed that for a generel Riemann sur-
face the set G is empty when p(d,g,r) < 0. In summary, we can
thus say that for a general Riemann surface M of jgenus g, the set
Holg(M,P7)/Aut (P7) is a projective manifold of dimension p (isomor-
phic to G minus a proper subvariety of relatively high codimension).

We conclude our survey with a brief mention of the smoothness
question. Gieseker [Gi] showed that for a general Riemann surface G
is smooth. Gieseker's theorem and other smoothness results rely on
the notion of semi-regularity which we define below. £ divisor D € C§
is said to be semi-regular if the cup product homomorphisiu

H'(|D)) &2 H'([N = D)) — HU(K), €omis &y

is injective. Similarly a line bundle L € W] is said to be semi-regular
if the cup product homomorphism

HY(L)® HYK @ L*) — H°(K)

is injective. Giveu a linear series g € G4 let W C H'[D]) be the cor-
responding (r + 1)-dimensional vector space, where g C |D|. Then the
linear series g is said to be semi-regular if the restricted cup product
homomorphism

W o H([K ~ D)) — HY(K)
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1s injective, We can now state the

Semi-Regularity theorem.

(1) Cjissmoothat D € CI\CH" and has the expected dimension
r+ p if and only if D is semi-regular. (When g ~r +d > 0,
no component of C] lies entirely in C;+l so that C;H is very
small. |

(2) W7 is smooth of dimension p at L € W]\ I’Vdr“ if and only if
L is sewi-regular. (Again, when g — 7 + d > 0, no component
of W7 lies in Wit

(3) 7 is smooth of dimension p at ¢} 17 and only if ¢} is semi-
regular.

The overall idea behind the proof of the sem -regularity theorem is to
give a description of the tangent space in terms of certain cohomology

groups.

A Few Words on the Literature. The literature on algebraic
curves 15 incredibly vast, and we do not pretend to be familiar with
even a swall portion of it. In the reference section we only list the
works explicitly cited in the survey. Bibliographies in [ACGH], [FK]
and [N] are extensive and should lead to furtber references.
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