• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.026 seconds

Study on Signal Processing Method for Extracting Hand-Gesture Signals Using Sensors Measuring Surrounding Electric Field Disturbance (주변 전기장 측정센서를 이용한 손동작 신호 검출을 위한 신호처리시스템 연구)

  • Cheon, Woo Young;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.26-32
    • /
    • 2017
  • In this paper, we implement a signal-detecting electric circuit based LED lighting control system which is essential in NUI technology using EPIC converting surrounding earth electric field disturbance signals to electric potential signals. We used signal-detecting electric circuits which was developed to extract individual signal for each EPIC sensor while conventional EPIC-based development equipments provide limited forms of signals. The signals extracted from our developed circuit contributed to better performance as well as flexiblity in processes of feature extracting stage and pattern recognition stage. We designed a system which can control the brightness and on/off of LED lights with four hand gestures in order to justify its applicability to real application systems. We obtained faster pattern classification speed not only by developing an instruction system, but also by using interface control signals.

Security Threats and Scenarios using Drones on the Battlefield (전장에서 드론을 활용한 보안 위협과 시나리오)

  • Park, Keun-Seog;Cheon, Sang-pil;Kim, Seong-Pyo;Eom, Jung-ho
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.73-79
    • /
    • 2018
  • Since 1910s, the drones were mainly used for military purposes for reconnaissance and attack targets, but they are now being used in various fields such as disaster prevention, exploration, broadcasting, and surveillance of risk areas. As drones are widely used from military to civilian field, hacking into the drones such as radio disturbance, GPS spoofing, hijacking, etc. targeting drones has begun to occur. Recently, the use of drones in hacking into wireless network has been reported. If the artificial intelligence technology is applied to the drones in the military, hacking into unmanned combat system using drones will occur. In addition, a drone with a hacking program may be able to relay a hacking program to the hacking drone located far away, just as a drone serves as a wireless communication station. And the drones will be equipped with a portable GPS jamming device, which will enable signal disturbance to unmanned combat systems. In this paper, we propose security threats and the anticipated hacking scenarios using the drones on the battlespace to know the seriousness of the security threats by hacking drones and prepare for future cyberspace.

  • PDF

Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel

  • Xiaohan Zhou;Xinrong Liu;Yu Xiao;Ninghui Liang;Yangyang Yang;Yafeng Han;Zhongping Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.395-409
    • /
    • 2023
  • Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.

Speed control of IPMSM using the Feedback Linearizations (피드백 선형화를 이용한 매입형 영구자석 동기전동기의 속도 제어)

  • Yong-Ho Jeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.867-874
    • /
    • 2024
  • In order to obtain good driving performance in motor control, measurement of the state required for control is necessary. It must also be able to compensate for nonlinear elements of the mathematical model of the motor and disturbances such as load variation. In this study, we design a Kalman filter that can effectively remove noise included in measurements. Kalman filters are effective in estimating the state of linear systems. The system model is feedback linearized by estimating nonlinear terms and load variation as disturbances and compensating them for the system control input. It can be shown that the Kalman filter and the disturbance observer can converge stably independently of each other. As a result of the state estimation, an angular velocity estimation error of within approximately 0.3 [%] and a constant load estimation error of within approximately 4 [%] were obtained.

Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics

  • Huh, You;Kim, Jong-S.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.424-431
    • /
    • 2006
  • Roll drafting, a mechanical operation attenuating fiber bundles to an appropriate thickness, is an important operation unit for manufacturing staple yams. It influences not only the linear density regularity of the slivers or staple yams that are produced, but also the quality of the textile product and the efficiency of the thereafter processes. In this research, the dynamic states of the fiber bundle in the roll drafting zone were analyzed by simulation, based on the mathematical model that describes the dynamic behavior of the flowing bundle. The state variables are the linear density and velocity of the fiber bundles and we simulated the dynamics states of the bundle flow, e.g., the profiles of the linear density and velocity in the draft zone for various values of the model parameters and boundary conditions, including the initial conditions to obtain their influence on the dynamic state. Results showed that the mean velocity profile of the fiber bundle was strongly influenced by draft ratio and process speed, while the input sliver linear density has hardly affected the process dynamics. Velocity variance of individual fibers that could be supposed to be a disturbing factor in drafting was also influenced by the process speed. But the major disturbance occurred due to the velocity slope discontinuity at the front roll, which was strongly influenced by the process speed. Thickness of input sliver didn't play any important role in the process dynamics.

Design Observable Model of Direct Drive Motor for Air Gap Estimation when Input Disturbance is Impulse signal (외란이 충격 신호일 때 공극 추정을 위한 직구동 모터의 관측 가능한 수학적 모델 수립)

  • Ki, Tae-Seok;Park, Youn-Sik;Park, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.627-631
    • /
    • 2012
  • Observable mathematical model of DDM (Direct Dirve Motor) was suggested. The motor that operates the object system directly is called DDM. DDM has many strong points, however, it has a significant disadvantage, that it is more sensitive to the external force than the motor with reduction gear. In other word, if the force is applied, air gap of the motor can be perturbed. This causes not only difficulty in motor control but also even more serious problem, such as the breakdown of motor. However, if the air gap variation can be estimated, it can help prevent these problems. DDM should be modeled to estimate the air gap variation. The type of researched DDM is PMSM (Permanent Magnet Synchronous Motor) and precedent model of PMSM includes only characteristics of electro-magnetic system and rotational motion. However, suggested model should also include characteristics of translational motion of rotor to estimate the air gap variation. Also, this model should satisfy observability condition, because state observer is designed based on this model.

Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise (비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • The criterion of zero-error probability provides a limitation on error probability functions being used for adaptive systems when the error samples are shifted by the influence of DC-bias noise. In this paper, we employ a bias term in the error distribution and propose a new criterion of the biased zero-error probability with error being zero. Also, by maximizing the proposed criterion on expanded filter structures, a supervised adaptive algorithm has been derived. From the simulation results of supervised equalization, the algorithm based on the proposed criterion yielded zero-centered and highly concentrated error samples without disturbance in the environments of strong impulsive and DC-bias noise.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

Development of Steering System for Unmanned Vehicle by Using Robust Control (무인차량의 강인한 조향제어 시스템 설계에 관한 연구)

  • Jeong, Seung-Gwon;Kim, In-Su;Park, Gi-Seon;Lee, Jong-Nyeon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.747-756
    • /
    • 2002
  • The automatic steering system for unmanned vehicle was developed. The magnet and MR (Magnetoresistive) sensors are used for the tue detecting system. The lateral distance between sensor and the center line of the road is determined by the linearization of the distance according to the output. The PD control theory is used for the design of the controller to compare with $H_\infty$ control theory. The $H_\infty$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_\infty$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_\infty$ controller is robust far the disturbances in the test results.

Noise and Fault Diagnosis Using Control Theory

  • Park, Rai-Wung;Sul Cho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2000
  • The aim of this paper is to describe an advanced method of the fault diagnosis using Control Theory with reference to a crack detection, a new way to localize the crack position under influence of the plant disturbance and white measurement noise on a rotating shaft. As the first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton-principle and in this way the system is modelled by various subsystems. The equations of motions with a crack are established by the adaption of the local stiffness change through breathing and gaping[1] from the crack to the equation of motion with an undamaged shaft. This is supposed to be regarded as a reference system for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear state observer is designed in order to detect the crack on the shaft. This is the elementary NL-observer(EOB). Using the elementary observer, an Estimator(Observer Bank) is established and arranged at the certain position on the shaft. In case, a crack is found and its position is known, the procedure, fro the estimation of the depth is going to begin.

  • PDF