• Title/Summary/Keyword: distributed localization

Search Result 151, Processing Time 0.028 seconds

Distributed Localization for Reducing Error Propagation in Wireless Sensor Networks (센서네트워크에서 에러 전파를 고려한 분산 위치 추정 기법)

  • Kim, Taeyoung;Shon, Minhan;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1068-1069
    • /
    • 2010
  • 무선센서네트워크에서 저가의 센서 필드를 구성하기 위해 센서노드의 위치 추정은 매우 중요하다. 소수의 위치를 알고 있는 센서노드인 앵커노드를 이용하여 모든 일반노드들의 위치를 알게 하는 방법으로 DRLS이 있으며, 이 기법은 이전의 기법들에 비해 상대적으로 정확한 위치 추정을 가능하게 한다. 하지만 DRLS는 이웃하는 앵커노드가 없는 일반노드의 경우 위치 추정 정확도를 심각하게 낮추는 에러 전파가 일어나는 문제점이 있다. 본 논문은 DRLS의 에러전파를 줄이기 위한 Distributed Localization for Reducing Error Propagation (DLREP)를 제안한다. DLREP는 각 일반노드들이 DRLS를 이용하여 위치 추정을 한 뒤 한 번의 추가적인 브로드캐스트를 더 수행하여 각 일반노드가 추가적인 앵커노드의 위치 정보를 얻게 한다. 그리고 이 정보를 이용하여 앵커노드 위치를 중심으로한 초기 위치의 회전을 통해 일반노드의 에러전파가 된 위치에 대한 수정을 가한다. DLREP는 위치 측정이 완료된 DRLS에 적용되어 더 정확한 센서노드의 위치 추정을 할 수 있도록 하는 진보된 위치 추정 기법이다.

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

Efficient Quantizer Design Algorithm for Sequence-Based Localization (SBL) Systems (시퀀스 기반 위치추정 시스템을 위한 효율적인 양자기 설계 알고리즘)

  • Park, Hyun Hong;Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • In this paper, we consider an efficient design of quantizers at sensor nodes for sequence-based localization (SBL) systems which recently show a competitive performance for in-door positioning, Since SBL systems locate targets by partitioning the sensor field into subregions, each with an unique sequence number, we use the distance samples between sensors and the sequences for quantizer design in order to propose a low weight design process. Furthermore, we present a new cost function devised to assign the number of samples and the number of unique sequences uniformly into each of quantization partitions and design quantizers by searching the quantization partitions and codewords that minimize the cost function. We finally conduct experiments to demonstrate that the proposed algorithm offers an outstanding localization performance over typical designs while maintaining a substantial reduction of design complexity.

Weighted Distance-Based Quantization for Distributed Estimation

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • We consider quantization optimized for distributed estimation, where a set of sensors at different sites collect measurements on the parameter of interest, quantize them, and transmit the quantized data to a fusion node, which then estimates the parameter. Here, we propose an iterative quantizer design algorithm with a weighted distance rule that allows us to reduce a system-wide metric such as the estimation error by constructing quantization partitions with their optimal weights. We show that the search for the weights, the most expensive computational step in the algorithm, can be conducted in a sequential manner without deviating from convergence, leading to a significant reduction in design complexity. Our experments demonstrate that the proposed algorithm achieves improved performance over traditional quantizer designs. The benefit of the proposed technique is further illustrated by the experiments providing similar estimation performance with much lower complexity as compared to the recently published novel algorithms.

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.

Efficient distributed estimation based on non-regular quantized data

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.710-715
    • /
    • 2019
  • We consider parameter estimation in distributed systems in which measurements at local nodes are quantized in a non-regular manner, where multiple codewords are mapped into a single local measurement. For the system with non-regular quantization, to ensure a perfect independent encoding at local nodes, a local measurement can be encoded into a set of a great number of codewords which are transmitted to a fusion node where estimation is conducted with enormous computational cost due to the large cardinality of the sets. In this paper, we propose an efficient estimation technique that can handle the non-regular quantized data by efficiently finding the feasible combination of codewords without searching all of the possible combinations. We conduct experiments to show that the proposed estimation performs well with respect to previous novel techniques with a reasonable complexity.

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao;Xiaofei Zhang;Honghao Hao
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.421-431
    • /
    • 2024
  • In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.

The effect of model parameters on single dipole source tracing in EEG (모델 변수가 EEG의 Single Dipole Source 추정에 끼치는 영향에 관한 연구)

  • 박기범;박인호;김동우;배병훈;김수용;박찬영;김신태
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.41-53
    • /
    • 1994
  • The accurate localization of electrical sources in the brain is one of the most important questions in EEG, especially in the analysis of evoked responses and of epileptiform spike activity. A detailed simulation study of single dipole source estimation based on EEG is given in this paper. The effects of dipole model parameters on single dipole source tracing in EEG are examined in some detail using the Monte Carlo simulation. The error of source localization is found to be greatly influenced by how the electrodes are distributed over the head and the number of them.

  • PDF