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I. INTRODUCTION 
 

We consider distributed estimation systems where many 

sensor nodes located at known sites gather measurements of 

the parameter of interest and quantize them before sending 

the data to a fusion node that executes the parameter 

estimation on the basis of the received quantized data. For 

these systems, particularly for power-constrained systems 

such as sensor networks, the design of the quantizers at the 

local nodes has a critical impact on the estimation 

performance. Thus, efficient quantization techniques have 

been suggested to achieve a statistically significant 

performance gain as compared to typical designs [1-7]. For 

example, the probabilistic distance between two hypotheses 

was employed as a cost function to yield a manageable 

design flow for distributed detection [1]. Necessary 

conditions were examined for constructing quantization 

partitions for distributed estimation systems [2]. For source 

localization in acoustic sensor networks, a novel algorithm 

was proposed to design local quantizers that minimize the 

localization error while maintaining a regular design by 

searching for appropriate weights [3, 4]. 

Most of the previous designs were developed on the basis 

of a regular quantization framework in which an infinite 

number of measurements are mapped to a given finite 

number of codewords such that the cost function is 

minimized. This minimization is achieved by maintaining a 

regular mapping structure where a single measurement 

belonging to a quantization partition is mapped to a single 

codeword. However, the resulting local quantizers have 
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Abstract 

We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the 

parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node 
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learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted 

from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a 
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been operated in a non-regular manner in order to improve 

the system performance, implying that the same codeword is 

mapped to multiple disjoint partitions [8]. Further, a 

merging technique to systematically transform regular 

quantizers into non-regular ones was proposed for achieving 

a substantial rate reduction without degrading the estimation 

accuracy [9]. In addition, an iterative algorithm for 

designing non-regular quantizers for a distributed estimation 

was devised in the Lloyd design framework [6], illustrating 

the structural advantage of non-regular designs. A novel 

encoding of quantization partitions into codewords was 

recently proposed to construct non-regular quantizers by 

allowing multiple codewords corresponding to each 

quantization partition [10]. 

Previous estimation techniques have been noted to 

assume a single codeword or quantization partition if a 

quantization index is received from a single node. However, 

when non-regular quantization is employed at the nodes, a 

fusion node should be able to interpret a single quantization 

index as multiple codewords or quantization partitions so as 

to achieve an efficient estimation on the basis of the 

received non-regular quantized data. In this study, we first 

assume non-regular quantizers at the nodes and seek to 

develop a practical estimation algorithm that obtains the 

most feasible combination by computing the weighted sum 

of the possible combinations generated from non-regular 

quantized measurements. Since the number of combinations 

from non-regular quantized data would significantly exceed 

that from regular ones, a huge computational complexity 

to compute the weights of these combinations would be 

inevitable. Thus, to obtain a low-complexity algorithm, 

we adopt a learning process using training samples and 

compute the feasibility or weight by counting the 

occurrence of each combination. Further, we discuss that the 

proposed algorithm achieves a substantial reduction in the 

complexity for computing the weights as compared to a 

direct computation of the probability of the combinations. 

We also evaluate the proposed algorithm by a comparison of 

typical estimation techniques, showing that a significant 

gain in the estimation accuracy can be attained by using the 

proposed estimation technique through extensive experiments 

where regular and non-regular quantized data are generated 

with the quantizers designed in [4], [6], respectively. 

The rest of this paper is organized as follows: The 

problem formulation for the distributed estimation is given 

in Section II. Non-regular quantization and estimation are 

elaborated in Section III, and the proposed estimation 

algorithm is summarized in Section III-A. In Section IV, a 

source localization system in acoustic sensor networks is 

introduced for the application of the proposed algorithm. 

Experimental results are provided in Section V, and the 

conclusions are presented in Section VI. 

 

II. PROBLEM FORMULATION 
 

In a sensor field S ⊂ R
N
, we assumed that M sensor 

nodes are spatially deployed at known locations, denoted by 

xi ∈ R
2
, i = 1, …, M and each node collects the 

measurements of the unknown parameter θ to be estimated. 

The measurement at node i, denoted by zi, can be expressed 

as follows:  

 

𝑧𝑖(𝜃) = 𝑓𝑖(𝜃) + 𝜔𝑖,   𝑖 = 1, … , 𝑀,        (1) 

 

where fi(θ) indicates the sensing model employed at node i 

and the measurement is assumed to be contaminated with an 

additive noise ωi approximated by the normal distribution 

N(0, σi
2
). The i-th node is assumed to quantize the 

measurement by using an Ri-bit quantizer before 

transmitting the quantization index j, where j = 1,…, Li = 2
Ri

, 

to a fusion node. In particular, the quantizer at node i sends 

the quantization index j whenever zi belongs to the j-th 

quantization partition. This partition can be defined as a 

single j-th codeword, a set of multiple codewords, or a 

union of disjoint partitions, depending on the quantization 

algorithms used at the node. Thus, a fusion node should 

produce the parameter estimate on the basis of the M-tuple 

quantization indices, each of which can be interpreted as a 

single codeword, multiple codewords, or union of 

quantization partitions, accordingly. 

 

 

III. NON-REGULAR QUANTIZATION AND 
PROPOSED ESTIMATION ALGORITHM 

 
In a typical parameter estimation, each node transmits the 

quantized measurement 𝑧̂𝑖 to a fusion node that performs 

the parameter estimation on the basis of the received M-

tuple(𝑧̂1, … , 𝑧̂𝑀). Note that the quantized measurement can 

be interpreted as a single region Ai where the parameter is 

found. In case of the minimum mean squared error (MMSE) 

estimation employed at the fusion node, the estimator is 

given as follows: 

 

𝜃 = 𝐸(𝜃|𝑧̂1, … , 𝑧̂𝑀) = 𝐸(𝜃|𝐴1, … , 𝐴𝑀),      (2) 

 

where 𝑧̂𝑖 or Ai will be 𝑧̂𝑖
𝑗
 or 𝐴𝑖

𝑗
 if zi is encoded to the j-th 

quantized measurement or quantization partition. However, 

to improve the rate distortion (RD) performance, non-

regular encoding can be carried out in several ways: 

multiple disjoint quantization partitions or codewords can be 

mapped to a single measurement. Formally, 

 

 𝑇𝑖: 𝑧𝑖 →  𝑉𝑖
𝑗
 𝑜𝑟 𝐶𝑖

𝑗
, 𝑗 = 1, … , 𝐿𝑖,         (3) 
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where Ti defines the mapping at node i and 𝑉𝑖
𝑗
 or 𝐶𝑖

𝑗
 

indicates a set of multiple disjoint quantization partitions or 

a set of multiple codewords, which can be constructed so as 

to minimize the cost functions such as the estimation error 

[6, 10]. 

First, the mapping between multiple partitions and 

measurements was proposed in [6] as follows: 

 

 𝑉𝑖
𝑗

= {𝑄𝑖
𝑘: 𝐸𝜃[‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖

𝑗
)‖

2
|𝑧𝑖(𝜃) ∈ 𝑄𝑖

𝑘]  

≤  𝐸𝜃[‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖
𝑙)‖

2
|𝑧𝑖(𝜃) ∈ 𝑄𝑖

𝑘], ∀𝑙 ≠ 𝑗} ,   (4) 

 

𝑧̂𝑖
𝑗

= 𝑎𝑟𝑔 𝑚𝑖𝑛𝑧̂𝑖
𝐸 [‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖)‖

2
|𝑧𝑖 ∈ 𝑉𝑖

𝑗
] ,   (5) 

 

where K denotes the given number of quantization partitions 

𝑄𝑖
𝑘 , 𝑘 = 1, … , 𝐾 ≫ 𝐿𝑖, which are initially constructed, and 

𝜃(𝑧̂𝑖
𝑗
) is the abbreviated notation for 𝜃(𝑧̂1, … , 𝑧̂𝑖

𝑗
, … , , 𝑧̂𝑀), 

which can be obtained using 𝑧̂𝑖
𝑗
 for 𝑧̂𝑖 . Note that as K 

increases, the estimation performance improves at the cost 

of increased design complexity. Here, 𝑉𝑖
𝑗
 represents the j-

th set of multiple possibly disjoint quantization partitions 

that will be encoded to the j-th codeword 𝑧̂𝑖
𝑗
 if such a 

mapping minimizes the distortion, producing a non-regular 

quantizer. Formally, the resultant set can be expressed as 

follows: 

 

 𝑉𝑖
𝑗

= {𝑄𝑖
𝑗(1), … , 𝑄𝑖

𝑗
(𝑛𝑖

𝑗
)}, 𝑗 = 1, … , 𝐿𝑖,      (6) 

 

where 𝑛𝑖
𝑗
 denotes the partition index for the j-th set and if 

𝑄𝑖
𝑗
 is assigned to the j-th set 𝑉𝑖

𝑗
 by using (4), it will be the 

𝑛𝑖
𝑗
-th element 𝑄𝑖

𝑗
(𝑛𝑖

𝑗
) of the set. Clearly, ∑ 𝑛𝑖

𝑗𝐿𝑖
𝑗=1 = 𝐾 . 

Therefore, we also use 𝑉𝑖
𝑗
 to indicate a set of multiple 

codewords: 

 

𝑉𝑖
𝑗

= {𝑧̂𝑖
𝑗(1), … , 𝑧̂𝑖

𝑗
(𝑛𝑖

𝑗
)}, 𝑗 = 1, … , 𝐿𝑖 ,       (7) 

 

where 𝑧̂𝑖
𝑗
(𝑛𝑖

𝑗
) denotes the centroid of the corresponding 

quantization partition 𝑄𝑖
𝑗
(𝑛𝑖

𝑗
) ∈ 𝑉𝑖

𝑗
. Notice from (4) that the 

encoding of multiple disjoint partitions into a single 

codeword is allowed so as to minimize the estimation error, 

whereas in a typical regular design framework, measure-

ment samples belonging to a connected partition are 

assigned to a single codeword. 

Secondly, the mapping between multiple codewords and 

measurements was recently published in [10]. First, 

quantization partitions 𝑉̂𝑖
𝑗
, 𝑗 = 1, … , 𝐿𝑖  that minimize the 

estimation error are generated as follows: 

 

        𝑉̂𝑖
𝑗

= {𝑧𝑖: 𝐸𝜃|𝑧𝑖
‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖

𝑗
)‖

2
    

≤  𝐸𝜃|𝑧𝑖
‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖

𝑘)‖
2
, ∀𝑘 ≠ 𝑗} ,      (8) 

 

𝑧̂𝑖
𝑗

= 𝑎𝑟𝑔 𝑚𝑖𝑛𝑧̂𝑖
𝐸 [‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖)‖

2
|𝑧𝑖 ∈ 𝑉̂𝑖

𝑗
],    (9) 

where 𝑉̂𝑖
𝑗
 denotes the j-th quantization partition consisting 

of measurement samples and constructed to minimize the 

estimation error. Further, if zi is encoded to 𝑉̂𝑖
𝑗
 from (8), 

𝜃(𝑧̂𝑖
𝑗
) , the abbreviated form of 𝜃(𝑧̂1, … , 𝑧̂𝑖

𝑗
, … , 𝑧̂𝑀)  is 

computed by using 𝑧̂𝑖
𝑗
 in place of 𝑧̂𝑖,∀i. Note that 𝑉̂𝑖

𝑗
 in 

(8) is a single partition of the measurement samples and is 

thus different from 𝑉𝑖
𝑗
 in (4). Considering 𝐶𝑖

𝑗
, 𝑗 = 1, … , 𝐿𝑖 , 

a set of codewords corresponding to 𝑉̂𝑖
𝑗

, the set is 

constructed by appending the 𝑛𝑖
𝑗

-th element of the 

measurement zi belonging to 𝑉̂𝑖
𝑗
 but encoded to the other 

partitions 𝑉̂𝑖
𝑘 , 𝑘 ≠ 𝑗: 

 

 𝐶𝑖
𝑗

= {𝑧̂𝑖
𝑗(1), … , 𝑧̂𝑖

𝑗
(𝑛𝑖

𝑗
)}, 𝑗 = 1, … , 𝐿𝑖,    (10) 

 

where the codeword index 𝑛𝑖
𝑗
 is increased to the cardinality 

of the set and zi is regarded as 𝑧̂𝑖
𝑗
(𝑛𝑖

𝑗
) if it is assigned to the 

j-th codeword set 𝐶𝑖
𝑗
. 

Once the partition sets or codeword sets are constructed 

from (7) and (10), respectively, the independent encoding of 

the local measurement zi into such sets at each node can be 

simply conducted as follows: 

 

𝑧̂𝑖
𝑗

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑗,𝑛

𝑖
𝑗

|𝑧𝑖 − 𝑧̂𝑖
𝑗
(𝑛𝑖

𝑗
)|

2
, 

 𝑗 = 1, … , 𝐿𝑖 , 𝑛𝑖
𝑗

= 1, … , |𝑉𝑖
𝑗
|.        (11) 

 

Note that although efficient mappings between multiple 

partitions (or codewords) and measurements have been 

proposed to improve the estimation performance, estimation 

at the fusion node has been conducted by interpreting each 

non-regular quantization index transmitted from the nodes 

as a single codeword, not multiple partitions or codewords. 

In other words, the best single codeword 𝑧̂𝑖
𝑗
 corresponding 

to 𝑉𝑖
𝑗
 or 𝐶𝑖

𝑗
 (see (5) and (9), respectively) is computed to 

represent the multiple partitions or codewords and used at 

the fusion node for the estimation, imposing a limited use 

of information of non-regular quantized data upon the 

estimation. 

However, if multiple partitions or codewords in 𝑉𝑖
𝑗
 or 

𝐶𝑖
𝑗
 are efficiently used for the estimation at the fusion node, 

the estimation accuracy will be significantly improved. Note 

that a direct use of multiple partitions or codewords in 

traditional estimation methods yields a huge computational 

complexity. In particular, the MMSE estimator denoted by 

𝜃𝑁𝑅 on the basis of the non-regular quantization for the case 

of multiple partitions can be expressed as follows: 

 

𝜃𝑁𝑅 = 𝐸[𝜃|𝑉1, … , 𝑉𝑀]  

= 𝐸[[𝜃|𝑄1
𝑗(1), … , 𝑄1

𝑗
(𝑛𝑖

𝑗
), … , 𝑄𝑀

𝑙 (1), … , 𝑄𝑀
𝑙 (𝑛𝑖

𝑙)] 

= 𝐸[[𝜃|𝑧̂1
𝑗(1), … , 𝑧̂1

𝑗
(𝑛𝑖

𝑗
), … , 𝑧̂𝑀

𝑙 (1), … , 𝑧̂𝑀
𝑙 (𝑛𝑖

𝑙)]  ,  (12) 

 

where 𝑉1 = 𝑉1
𝑗
 and 𝑉𝑀 = 𝑉1

𝑙  are assumed. As expected, 

the computation of (12) will be extremely costly and thus, 
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will be efficient to first find the best combination of the M-

tuple codewords from all the possible combinations that can 

be generated from the received M-tuple quantization 

partition sets (𝑉1, … , 𝑉𝑀). Note that this approach allows us 

to select one of the multiple codewords or partitions 

depending on measurements at the other nodes so as to 

minimize the estimation error when each measurement can 

be mapped to multiple partitions or codewords, whereas the 

typical estimation assumes a single partition or codeword, 

irrespective of the other quantized measurements. 

A mathematical expression to find the best combination 

from the received M-tuple (𝑉1 , … , 𝑉𝑀) can be provided as 

follows: 

 

𝒛̂1
𝑀∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑧̂1∈𝑉1,…,𝑧̂𝑀∈𝑉𝑀

𝐸 [‖𝜃(𝑧𝑖) − 𝜃(𝑧̂𝑖)‖
2

|𝑉1, … , 𝑉𝑀] ,(13) 

 

where 𝒛̂1
𝑀∗ indicates a vector of (𝑧̂1

∗, … , 𝑧̂𝑀
∗  ) and the i-th 

node is assumed to send Vi, which consists of multiple 

partitions (equivalently, multiple codewords), all of which 

are searched to find the best combination to minimize the 

estimation error. Obviously, the computational complexity 

of (13) is still beyond practical implementation because of 

the conditional expectation for a large number of possible 

combinations. To further reduce the complexity, the 

weighted sum of the combinations that are likely to occur 

given the received M-tuple (𝑉1, … , 𝑉𝑀)  should be 

calculated: 

 

𝒛̂1
𝑀∗ = ∑ 𝑧̂1

𝑀
𝑧̂1∈𝑉1,…,𝑧̂𝑀∈𝑉𝑀

𝑃[(𝑧̂1, … , 𝑧̂𝑀) |𝑉1, … , 𝑉𝑀],  (14) 

 

where 𝑃[(𝑧̂1, … , 𝑧̂𝑀) |𝑉1, … , 𝑉𝑀]  denotes the probability or 

feasibility of the combination (𝑧̂1, … , 𝑧̂𝑀) given the received 

M-tuple. Although a substantial reduction in the complexity 

of finding the best combination is provided by (14), a high 

computational cost to obtain the best combination may still 

be needed if the cardinality of 𝑉𝑖 , 𝑖 = 1, … , 𝑀, is large. In this 

work, we further suggest a low-weight technique to compute 

the best combination by using training samples in a learning 

process. 

 

A. Summary of Proposed Algorithm 
 

Given the number of quantization levels, Li = 2
Ri

, the 

algorithm to compute the best combination for the partition 

sets 𝑉𝑖
𝑗
, ∀𝑖, 𝑗  is summarized as follows: Note that the 

algorithm can be applied to the case of codeword sets 

𝐶𝑖
𝑗
, ∀𝑖,  with 𝑉𝑖

𝑗
 and 𝑧̂𝑖

𝑗
(𝑛𝑖

𝑗
)  replaced with 𝐶𝑖

𝑗
 and 

𝑧̂𝑖
𝑗
(𝑛𝑖

𝑗
), respectively. 

 

Algorithm: Proposed algorithm to find the best 

combination for non-regular quantized data 

Step 1: Set frequency index 𝑝(𝑙, 𝑘𝑙) = 0, 𝑙 = 1, … , 𝐿 =
∏ 𝐿𝑖

𝑀
𝑖=1 , where l denotes the increase in the number of 

all possible combinations of M-tuple (𝑉1, … , 𝑉𝑀) and 

𝑘𝑙 indicates the 𝑘𝑙-th combination belonging to the l-th 

M-tuple (𝑉1, … , 𝑉𝑀). Note that 𝑘𝑙 is increased to the 

number of all possible combinations of the M-tuple 

codewords (𝑧̂1(𝑛𝑖), … , 𝑧̂𝑀(𝑛𝑖)) , where 𝑧̂𝑖(𝑛𝑖) ∈
𝑉𝑖 , 𝑛𝑖 = 1, … , |𝑉𝑖|. 

Step 2: For each training sample 𝒛1
𝑀(𝜃) = (𝑧1, … 𝑧𝑀), find 

the codewords 𝑧̂𝑖 , 𝑖 = 1, … , 𝑀 by using (11). 

Step 3: Increase the frequency index 𝑝(𝑙, 𝑘𝑙) = 𝑝(𝑙, 𝑘𝑙) + 1 

if (𝑉1, … , 𝑉𝑀)  denotes the l-th combination and 

(𝑧̂1, … , 𝑧̂𝑀) obtained in Step 2 represents the 𝑘𝑙 -th 

combination. 

Step 4: Repeat Steps 2 and 3 for all the training samples. 

 

Once the frequency indices 𝑝(𝑙, 𝑘𝑙) are computed, the 

best combination (𝑧̂1
∗, … , 𝑧̂𝑀

∗  ) corresponding to the l-th M-

tuple (𝑉1, … , 𝑉𝑀)  is chosen as the weighted sum given 

by ∑ 𝒛̂1
𝑀𝑝(𝑙, 𝑘𝑙).𝑘𝑙

 Thus, the proposed estimation technique 

based on non-regular data can be expressed as follows: 

 

𝜃 = 𝐸[𝜃|𝑉1, … , 𝑉𝑀] ≈ 𝐸[𝜃|𝑧̂1
∗, … , 𝑧̂𝑀

∗  ] .    (15) 

 

 

IV. APPLICATION OF DESIGN ALGORITHM  
 

For the evaluation, we apply the proposed estimation 

algorithm to a source localization system in acoustic sensor 

networks, which is briefly introduced in this section. Each 

sensor node is assumed to obtain the source signal energy 

by using an energy decay model proposed and verified by 

the field experiment in [11]. Note that the sensor model was 

widely used for an energy-based source location [12-14]. 

Formally, the signal energy measurement at sensor i, 

denoted by zi, can be expressed as follows: 

 

𝑧𝑖(𝜃) = 𝑔𝑖
𝑎

‖𝜃−𝑥𝑖‖𝛼 + 𝜔𝑖 ,           (16) 

 

where θ indicates the source location to be estimated and 

fi(θ) represents an acoustic sensor model with the gain factor 

of the i-th sensor gi and an energy decay factor α 

approximately equal to 2. The additive noise wi is assumed 

to be approximated by using a normal distribution, N(0, σi
2
). 

In this work, we also assumed that the source signal energy 

a is known for the estimation in our evaluation of the 

proposed algorithm. Note that the signal energy is typically 

unknown and can be jointly estimated with the source 

location [14]. 

 

 

V. SIMULATION RESULTS 
 

In this section, by assuming the model parameters in (16) 

given by σi
2
 = σ

2
 = 0 and a = 50, α = 2, and gi = 1, we collect 

training samples from the assumption of a uniform 
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distribution of source locations and design regular and non-

regular quantizers denoted by the localization-specific 

quantizer [4] and the distributed optimized quantizer [6], 

respectively. Once the non-regular quantizers are designed, 

we generate non-regular training samples in the simulation 

condition assumed during the quantizer design process. By 

using the algorithm proposed in Section III-A, we find the 

most feasible combination for each of the possible M-tuple 

quantization indices and calculate the average localization 

error 𝐸‖𝜃 − 𝜃‖
2
 by using the maximum likelihood (ML) 

estimation for fast computation. In the experiments, we 

gather training and test samples from 100 different 

configurations of M = 5 sensor nodes deployed in a 10 m ×  

10 m sensor field. 

 

A. Performance Comparison with Typical 
Estimation Algorithm based on Regular and 
Non-regular Quantization 

 

In this experiment, we compare the proposed estimation 

technique with the ML estimator, one of the typical 

estimation methods. For a typical estimation, we use the 

combination that represents the received M-tuple 

quantization indices, whereas we compute the weighted sum 

of the combinations for our estimation that are likely to 

occur given the M-tuple indices. Note that once the 

combination is found, the combination-based estimation is 

performed using the ML estimator for a fair comparison. In 

Fig. 1, the RD curves are plotted for regular and non-regular 

quantized data, and as expected, the proposed estimation 

technique produces a substantially improved estimation 

performance with respect to the typical estimation method. 

Note that the proposed algorithm operates considerably  

 

 

 
 

Fig. 1. Comparison of proposed estimation with typical ML estimation: 

average localization error is plotted vs. the rate Ri (bit). LSQ: localization-
specific quantizer, ML: maximum likelihood, DOQ: distributed optimized 
quantizer, Prop EST: proposed estimation. 

 
Fig. 2. Performance evaluation under a noisy condition: average 

localization error is plotted vs. the signal-to-noise ratio (SNR) with M = 5, 
Ri = 3, and a = 50. LSQ: localization-specific quantizer, ML: maximum 
likelihood, DOQ: distributed optimized quantizer, Prop EST: proposed 
estimation. 

 
 
faster to find the best combination than directly calculating 

the probabilities of all the combinations. In testing the 

estimation algorithms, we generate test samples of 1,000 

source locations for each configuration with σi = 0 and 

gather regular and non-regular quantized data by varying Ri 

= 2, 3, 4 bits. 

 
B. Performance Evaluation in Presence of 

Measurement Noise 
 

We examine the sensitivity of the estimation algorithms 

with respect to the measurement noise by generating a test 

set of 1,000 source locations for each configuration with a = 

50. For each of the test sets, we gather the noise-corrupted 

test samples by varying σi = σ, which can be expressed in 

terms of the signal-to-noise ratio (SNR) in the range of 40 

dB to 100 dB. Note that the SNR is given by 10 log10 a
2
/σ

2
 

measured at 1 m from the source location. Typical vehicles 

have been observed to generate a considerably higher noisy 

engine sound than 40 dB and the noise variance typically 

takes a value of σ
2
 = 0.052 (=60 dB) [11, 13]. In Fig. 2, we 

demonstrate that the proposed estimation algorithm still 

operates robustly under noisy conditions as compared to 

the typical techniques, implying that finding the best 

combination should become an integral part of the 

estimation for distributed systems with non-regular 

quantization. 

 

C. Sensitivity of Proposed Algorithm to 
Parameter Perturbation 

 

We investigate the sensitivity of the proposed estimation 

to the parameter perturbation. In this experiment, we  
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Table 1. Localization error (LE) of the proposed estimation technique 

with Ri = 3 due to variations of the model parameters 

Decay factor α LE Gain factor gi LE 

1.8 1.2577 0.8 1.0559 

1.9 0.9148 0.9 0.7731 

2.0 0.6610 1.0 0.6610 

2.1 0.9207 1.1 0.7619 

2.2 1.2771 1.2 0.9247 

LE is computed in meters by taking the average of 100 5-sensor configurations. 
 

 

generate a test set of 1,000 source locations with a = 50 for 

each configuration by varying one of the model parameters. 

The experimental results presented in Table 1 show 

robustness to mismatch conditions where the parameters 

such as decay factor α and gain factor gi are perturbed from 

the parameter values used in the quantizer design. 

 

 

VI. CONCLUSION 
 

In this paper, we have proposed a distributed estimation 

algorithm that makes full use of non-regular quantized 

data by finding the most feasible combination for each of 

the received quantized indices with a substantially reduced 

design complexity. We applied the proposed algorithm for 

source localization to acoustic sensor networks and 

demonstrated that a significant performance gain can be 

achieved by computing the weighted sum of the probable 

combinations given the received non-regular quantized 

data. Since non-regular quantization is expected to become 

attractive for distributed systems to improve system 

performance, we intend to develop a joint design 

methodology for non-regular quantization and estimation 

in the future. 
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