• Title/Summary/Keyword: display material

Search Result 1,669, Processing Time 0.032 seconds

A Study On The Impact Of Display Modeling for Message In Exhibition Space (전시공간중 전시조형이 정보전달에 미치는 영향에 관한 연구)

  • Li, Yang;Hong, Kwan-Seon
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2008.05a
    • /
    • pp.67-70
    • /
    • 2008
  • The one of the most important thing for the successful realization of display functions in modern exhibition activities is based on exhibition space and the information communication between designers and visitors. Therefore, the information transmission has become an important function of modern exhibition activities. How to transmit information effectively is the key factor of successful exhibition design. However, 'people flow' and 'transportation' are taken as the main issues for a lot of the design works in space design of exhibition. But the information transmission is seldom taken into account as an important factor. The ultimate objective of exhibition design is to transmit the exhibits' information effectively to visitors, so the effective transmission of exhibiting information becomes the most important criteria in exhibition design. The successful exhibition can be well designed through information transmission by means of material objects, a lighting, properties, sounds, color, performance, etc The successful effects of the exhibition also depends on a great extent of the display design and a modeling in exhibition space. Modern exhibition design is getting more importance on the research on forms including basic features and exhibition space relations of forms. This research discusses on the design method that is favorable to information transmission In order to deal with the factor of display and modeling in exhibition space.

  • PDF

The performance dependency of the organic based solar cells on the variation in InZnSnO thickness

  • Choi, Kwang-Hyuk;Jeong, Jin-A;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.268-268
    • /
    • 2010
  • The performance dependence of the P3HT:PCBM based bulk hetero-junction (BHJ) organic solar cells (OSCs) on the electrical and the optical properties of amorphous InZnSnO (a-IZTO) electrodes as a difference in film thicknesses are examined. With an increasing of the a-IZTO thickness, the series resistance ($R_{series}$) of the OSCs is reduced because of the reduction of sheet resistance ($R_{sheet}$) of a-IZTO electrodes. Additionally, It was found that the photocurrent density ($J_{sc}$) and the fill factor (FF) in OSCs are mainly affected by the electrical conductivity of the a-IZTO anode films rather than the optical transparency at thinner a-IZTO films. On the other hand, despite the much lower $R_{series}$ comes from thicker anode films, the dominant factor affecting the $J_{sc}$ became average optical transmittance of a-IZTO electrodes as well as power conversion efficiency (PCE) in same device configuration due to the thick anode films had as sufficiently low $R_{sheet}$ to extract the hole carrier from the active material.

  • PDF

Revolution of the TFT LCD Technology

  • Liu, C.T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.4-4
    • /
    • 2006
  • Since the introduction of TFT LCDs in portable personal computers (notebooks) in the early 1990's, the TFT LCD industry has experienced several waves of technology revolution: (1) product introduction, (2) performance enrichment, (3) power utilization and material utilization, and (4) human-interface functions.

  • PDF

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

Effect of $Al_2O_3$ capping layer on properties of MgO protection layer for plasma display panel

  • Eun, Jae-Hwan;Lee, Jung-Heon;Kim, Soo-Gil;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.628-631
    • /
    • 2002
  • $Al_2O_3$ capping layer and MgO protective layer were deposited by electron beam evaporation method using single crystal source. Thickness of the capping layer, $Al_2O_3$, was varied from 5 nm to 10 nm. Surface morphology was observed by SEM and AFM before and after hydration. And microstructure of deposited $Al_2O_3$ layer and chemical shift of electron binding energy were also observed by high resolution TEM and XPS, respectively, after hydration. From these results, it was found that Mg atoms diffused into $Al_2O_3$ layer, reacted with moisture and formed $Mg(OH)_2$ during hydration. As thickness of $Al_2O_3$ increased, extent of hydration increased. $Al_2O_3$ capped MgO thin films and uncapped MgO thin films were deposited on AC-PDP test panel to characterize discharge properties. Although $Al_2O_3$ has poor discharge properties rather than MgO, because of many hydrated species on the surface of MgO, similar discharge properties were observed.

  • PDF

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

The study on formation of ITO by DC reacrive magnetron sputtering (반응성 직류마그네트론 스퍼터링에 의한 ITO박막 형성에 관한 연구)

  • 하홍주;조정수;박정후
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.699-707
    • /
    • 1995
  • The material that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. It has many fields of application such as Solar Cell, Liquid Crystal display, Vidicon on T.V, transparent electrical heater, selective optical filter, and a optical electric device , etc. In the recent papers on several TCO( transparent conducting oxide ) material, the study is mainly focusing on ITO(indium tin oxide) because ITO shows good results on both optical and electrical properties. Nowaday, in the development of LCD(Liquid Crystal display), the low temperature process to reduce the production cost and to deposit ITO on polymer substrate (or low melting substrate) has been demanded. In this study, we prepared indium tin oxide(ITO) by a cylindrical DC magnetron sputtering with Indium-tin (9:1) alloy target instead of indium-tin oxide target. The resistivity of the film deposited in oxygen partial pressure of 5% and substrate temperature of 140.deg. C. is 1.6*10$\^$-4/.ohm..cm with 85% optical transmission in viaible ray.

  • PDF

Physical Properties of Alkali Resistant-Glass Fibers with Refused Coal Ore in Continues Fiber Spinning Conditions

  • Ji-Sun Lee;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.355-362
    • /
    • 2024
  • AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 ℃ for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 ℃. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.