• 제목/요약/키워드: discovery and justification

검색결과 13건 처리시간 0.02초

스프레드시트 환경에서 모델링 활동을 통한 수학적 발견과 정당화 (Mathematical Discovery and Justification through Modeling Activity in Spreadsheet Environment)

  • 손홍찬;류희찬
    • 대한수학교육학회지:학교수학
    • /
    • 제7권4호
    • /
    • pp.427-444
    • /
    • 2005
  • 스프레드시트는 표, 그래프 기능 그리고 셀 참조 기능을 가지고 있고, 이러한 기능은 모델링 활동에서 중요한 역할을 한다. 이 글에서는 스프레드시트를 활용한 수학적 모델링 활동에서의 수학적 규칙의 발견과 이의 정당화 과정을 알아보고자 한다. 이를 위해 스프레드시트 환경이 특정 문제 상황의 해결에 어떻게 도움을 주는 지 알아보고, 어떻게 특정한 문제 상황을 일반적인 문제 상황으로 바꿀 수 있도록 하는지를 알아본다. 또한 문제 상황 속에 내재하는 수학적 규칙의 발견에 이르는 과정을 알아보고, 발견한 규칙의 정당화 유형과 스프레드시트가 정당화에 어떤 영향을 미치는지를 알아본다.

  • PDF

중학교 수학 영재아의 수학적 정당화에 대한 인식과 특성에 관한 연구 (A Study on the Recognition and Characteristics of Mathematical Justification for Gifted Students in Middle School Mathematics)

  • 홍영석;손홍찬
    • 한국학교수학회논문집
    • /
    • 제24권3호
    • /
    • pp.261-282
    • /
    • 2021
  • 이 연구는 중학교 수학 영재학생의 수학적 정당화에 대한 의미 인식과 수학적 정당화의 특성을 파악하여 정당화 교육을 위한 시사점을 얻고자 한 것이다. 이를 위해 17명의 중학교 수학 영재학생을 대상으로 설문지와 검사지를 투입하여 분석한 결과, 영재학생들은 수학적 정당화에 대하여 입증, 체계화, 발견, 지적 도전과 같은 다양한 의미로 정당화를 인식하였고, 연역적 정당화의 선호도가 높았다. 실제 정당화 활동의 결과, 대수와 기하 문항 모두에서 연역적 정당화가 많았지만 대수 문항에서는 경험적 정당화도 많은 반면 기하 문항에서는 매우 낮음을 알 수 있었다. 연역적 정당화를 완성한 경우, 자신의 정당화에 만족함을 보였지만 수학적 문자와 기호를 사용하여 명제의 일반성을 연역적으로 정당화를 하지 못한 경우에는 불만족을 보였다. 연구 결과는 영재학생들이 경험적 추론의 유용성과 한계를 깨닫고 연역적 정당화를 할 수 있도록 하며 특히 대수적 번역 능력을 향상시킬 수 있는 정당화 교육이 필요함을 시사한다.

증명의 수리철학적 분석과 지도 방향 탐색 (The National of Proof and the Improvement of Proof Education - In the Perspective on the Philosophy of Mathematics -)

  • 나귀수
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제8권1호
    • /
    • pp.351-364
    • /
    • 1998
  • This thesis analyzes the nature of proof in the perspective on the philosophy of mathematics. such as absolutism, quasi-empiricism and social constructivism. And this thesis searches for the improvement of teaching proof in the light of the result of those analyses of the nature of proof. Though the analyses of the nature of proof in the perspective on the philosophy of mathematics, it is revealed that proof is a dynamic reasoning process unifying the way of analytical thought and the way of synthetical thought, and plays remarkably important roles such as justification, discovery and conviction. Hence we should teach proof as a dynamic reasoning process unifying the way of analytic thought and the way of synthetic thought, avoiding the mistake of dealing with proof as a unilaterally synthetic method. At the same time, we should make students have the needs of proof in a natural way by providing them with the contexts of both justification and discovery simultaneously. Finally, we should introduce the aspect of proof that can be represented as conviction, understanding, explanation and communication to school mathematics.

  • PDF

초등학생의 수학적 정당화에 관한 연구 (A study on mathematical justification activities in elementary school)

  • 권성룡
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제7권2호
    • /
    • pp.85-99
    • /
    • 2003
  • In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.

  • PDF

역사-발생적 접근을 통한 논증 기하 학습의 직관적 수준에 대한 고찰

  • 홍진곤;권석일
    • 한국수학사학회지
    • /
    • 제16권2호
    • /
    • pp.55-70
    • /
    • 2003
  • This study investigated tile intuitive level of justification in geometry, as the former step to the aximatization, with concrete examples. First, we analyze limitations that the axiomatic method has in tile context of discovery and the educational situation. This limitations can be supplemented by the proper use of the intuitive method. Then, using the histo-genetic analysis, this study shows the process of the development of geometrical thought consists of experimental, intuitive, and axiomatic steps. The intuitive method of proof which is free from the rigorous axiom has an advantage that can include the context of discovery. Finally, this paper presents the issue of intuitive proving that the three angles of an arbitrary triangle amount to 180$^{\circ}$, as an example of the local systematization.

  • PDF

조선 산학서 《주서관견》의 도해적 추론 (Diagrammatic Reasoning in Joseon Mathematics Book 'JuseoGwangyeon')

  • 장혜원
    • 한국수학사학회지
    • /
    • 제36권4호
    • /
    • pp.61-78
    • /
    • 2023
  • By virtue of the characteristics inherent in diagrams, diagrammatic reasoning has potential and limitations that distinguish it from general thinking. It is natural that diagrams rarely appeared in Joseon mathematical books, which were heavily focused on computation and algebra in content, and preferred linguistic expressions in form. However, as the late Joseon Dynasty unfolded, there emerged a noticeable increase in the frequency of employing diagrams, due to the educational purposes to facilitate explanations and the influence of Western mathematics. Analyzing the role of diagrams included in Jo Taegu's 'JuseoGwangyeon', an exemplary book, this study includes discussions on the utilization of diagrams from the perspective of mathematics education, based on the findings of the analysis.

학교 수학에서의 '증명' (Proof' in school mathematics)

  • 조완영;권성룡
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제11권2호
    • /
    • pp.385-402
    • /
    • 2001
  • The purpose of this study is to conceptualize 'proof' school mathematics. We based on the assumption the following. (a) There are several different roles of 'proof' : verification, explanation, systematization, discovery, communication (b) Accepted criteria for the validity and rigor of a mathematical 'proof' is decided by negotiation of school mathematics community. (c) There are dynamic relations between mathematical proof and empirical theory. We need to rethink the nature of mathematical proof and give appropriate consideration to the different types of proof related to the cognitive development of the notion of proof. 'proof' in school mathematics should be conceptualized in the broader, psychological sense of justification rather than in the narrow sense of deductive, formal proof 'proof' has not been taught in elementary mathematics, traditionally, Most students have had little exposure to the ideas of proof before the geometry. However, 'proof' cannot simply be taught in a single unit. Rather, proof must be a consistent part of students' mathematical experience in all grades, in all mathematics.

  • PDF

A Possible Scientific Inquiry Model based on Hypothetico-Deduction Method Involving Abduction

  • Oh, Jun-Young
    • 한국과학교육학회지
    • /
    • 제32권3호
    • /
    • pp.486-501
    • /
    • 2012
  • The aims of this study are to investigate two main problems for the hypothetico-deduction method and to develop a scientific inquiry model to resolve these problems. The structure of this scientific inquiry model consists of accounts of the context of discovery and justification that the hypothetico-deduction holds as two main problems : 1) the heuristic flaw in the hypothetico-deduction method is that there is no limit to creating hypotheses to explain natural phenomena; 2) Logically, this brings into question affirming the consequent and modus tollens. The features of the model are as follows: first, the generation of hypotheses using an analogical abduction and the selection of hypotheses using consilience and simplicity; second, the expansion phase as resolution for the fallacy of affirming the consequent and the recycle phase as resolution for modus tollens involving auxiliary hypotheses. Finally, we examine the establishment process of Copernicus's Heliocentric Hypothesis and the main role of the history of science for the historical invalidity of this scientific inquiry model based on three examples of If/and/then type of explanation testing suggested by Lawson (International journal of science and Mathematics Education, 2005a, 3(1): 1-5) We claim that this hypotheticho-deduction process involving abduction approach produced favorable in scientific literacy rising for science teacher as well as students.

수학적 추론의 본질에 관한 연구 (A Study on the Nature of the Mathematical Reasoning)

  • 서동엽
    • 한국초등수학교육학회지
    • /
    • 제14권1호
    • /
    • pp.65-80
    • /
    • 2010
  • 본 연구는 고대 그리스 시대의 수학적 추론의 발달 과정을 통하여 그 본질과 지도 방안을 탐색해 보고자 하였다. 먼저 문헌 연구로서 고대 그리스 시대의 수학적 추론의 발달 과정에 대한 Netz의 분석을 살펴보았고, Freudenthal의 국소적 조직화 이론과의 관련성을 분석해 보았다. 분석 결과 수학적 추론에서 용어와 기호가 자연 언어 중심으로 되는 것이 적절한 것으로 파악되었으며, 학생들의 직관에 근거하여 수학적 필연성을 형성하게 하는 지도 방안이 적절한 것으로 생각된다. 또한 다각형의 내각의 합을 소재로 귀납에 의한 발견과 정당화, 나아가 다각형으로의 일반화라는 패턴에 따른 지도 계열과 방안을 제시하였다.

  • PDF

귀납적 추론의 과정 분석 (Analysis of Inductive Reasoning Process)

  • 이성근;류희수
    • 대한수학교육학회지:학교수학
    • /
    • 제14권1호
    • /
    • pp.85-107
    • /
    • 2012
  • 본 연구에서는 문제해결에서 귀납적 추론의 과정을 분석하여 귀납적 추론의 단계를 0단계 문제 이해, 1단계 규칙성 인식, 2단계 자료 수집 실험 관찰, 3단계 추측(3-1단계)과 검증(3-2단계), 4단계 발전의 총 5단계로, 귀납적 추론의 흐름은 0단계에서 4단계로의 순차적인 흐름을 포함하여 자신이 찾은 규칙이나 추측에 대하여 반례를 발견하였을 때 대처하는 방식에 따라 다양하게 설정하였다. 또한 초등학교 6학년 학생 4명에 대한 사례 연구를 통하여 연구자가 설정한 귀납적 추론 단계와 흐름의 적절성을 확인하였고 귀납적 추론의 지도를 위한 시사점을 도출하였다.

  • PDF