스프레드시트는 표, 그래프 기능 그리고 셀 참조 기능을 가지고 있고, 이러한 기능은 모델링 활동에서 중요한 역할을 한다. 이 글에서는 스프레드시트를 활용한 수학적 모델링 활동에서의 수학적 규칙의 발견과 이의 정당화 과정을 알아보고자 한다. 이를 위해 스프레드시트 환경이 특정 문제 상황의 해결에 어떻게 도움을 주는 지 알아보고, 어떻게 특정한 문제 상황을 일반적인 문제 상황으로 바꿀 수 있도록 하는지를 알아본다. 또한 문제 상황 속에 내재하는 수학적 규칙의 발견에 이르는 과정을 알아보고, 발견한 규칙의 정당화 유형과 스프레드시트가 정당화에 어떤 영향을 미치는지를 알아본다.
이 연구는 중학교 수학 영재학생의 수학적 정당화에 대한 의미 인식과 수학적 정당화의 특성을 파악하여 정당화 교육을 위한 시사점을 얻고자 한 것이다. 이를 위해 17명의 중학교 수학 영재학생을 대상으로 설문지와 검사지를 투입하여 분석한 결과, 영재학생들은 수학적 정당화에 대하여 입증, 체계화, 발견, 지적 도전과 같은 다양한 의미로 정당화를 인식하였고, 연역적 정당화의 선호도가 높았다. 실제 정당화 활동의 결과, 대수와 기하 문항 모두에서 연역적 정당화가 많았지만 대수 문항에서는 경험적 정당화도 많은 반면 기하 문항에서는 매우 낮음을 알 수 있었다. 연역적 정당화를 완성한 경우, 자신의 정당화에 만족함을 보였지만 수학적 문자와 기호를 사용하여 명제의 일반성을 연역적으로 정당화를 하지 못한 경우에는 불만족을 보였다. 연구 결과는 영재학생들이 경험적 추론의 유용성과 한계를 깨닫고 연역적 정당화를 할 수 있도록 하며 특히 대수적 번역 능력을 향상시킬 수 있는 정당화 교육이 필요함을 시사한다.
This thesis analyzes the nature of proof in the perspective on the philosophy of mathematics. such as absolutism, quasi-empiricism and social constructivism. And this thesis searches for the improvement of teaching proof in the light of the result of those analyses of the nature of proof. Though the analyses of the nature of proof in the perspective on the philosophy of mathematics, it is revealed that proof is a dynamic reasoning process unifying the way of analytical thought and the way of synthetical thought, and plays remarkably important roles such as justification, discovery and conviction. Hence we should teach proof as a dynamic reasoning process unifying the way of analytic thought and the way of synthetic thought, avoiding the mistake of dealing with proof as a unilaterally synthetic method. At the same time, we should make students have the needs of proof in a natural way by providing them with the contexts of both justification and discovery simultaneously. Finally, we should introduce the aspect of proof that can be represented as conviction, understanding, explanation and communication to school mathematics.
In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.
This study investigated tile intuitive level of justification in geometry, as the former step to the aximatization, with concrete examples. First, we analyze limitations that the axiomatic method has in tile context of discovery and the educational situation. This limitations can be supplemented by the proper use of the intuitive method. Then, using the histo-genetic analysis, this study shows the process of the development of geometrical thought consists of experimental, intuitive, and axiomatic steps. The intuitive method of proof which is free from the rigorous axiom has an advantage that can include the context of discovery. Finally, this paper presents the issue of intuitive proving that the three angles of an arbitrary triangle amount to 180$^{\circ}$, as an example of the local systematization.
By virtue of the characteristics inherent in diagrams, diagrammatic reasoning has potential and limitations that distinguish it from general thinking. It is natural that diagrams rarely appeared in Joseon mathematical books, which were heavily focused on computation and algebra in content, and preferred linguistic expressions in form. However, as the late Joseon Dynasty unfolded, there emerged a noticeable increase in the frequency of employing diagrams, due to the educational purposes to facilitate explanations and the influence of Western mathematics. Analyzing the role of diagrams included in Jo Taegu's 'JuseoGwangyeon', an exemplary book, this study includes discussions on the utilization of diagrams from the perspective of mathematics education, based on the findings of the analysis.
The purpose of this study is to conceptualize 'proof' school mathematics. We based on the assumption the following. (a) There are several different roles of 'proof' : verification, explanation, systematization, discovery, communication (b) Accepted criteria for the validity and rigor of a mathematical 'proof' is decided by negotiation of school mathematics community. (c) There are dynamic relations between mathematical proof and empirical theory. We need to rethink the nature of mathematical proof and give appropriate consideration to the different types of proof related to the cognitive development of the notion of proof. 'proof' in school mathematics should be conceptualized in the broader, psychological sense of justification rather than in the narrow sense of deductive, formal proof 'proof' has not been taught in elementary mathematics, traditionally, Most students have had little exposure to the ideas of proof before the geometry. However, 'proof' cannot simply be taught in a single unit. Rather, proof must be a consistent part of students' mathematical experience in all grades, in all mathematics.
The aims of this study are to investigate two main problems for the hypothetico-deduction method and to develop a scientific inquiry model to resolve these problems. The structure of this scientific inquiry model consists of accounts of the context of discovery and justification that the hypothetico-deduction holds as two main problems : 1) the heuristic flaw in the hypothetico-deduction method is that there is no limit to creating hypotheses to explain natural phenomena; 2) Logically, this brings into question affirming the consequent and modus tollens. The features of the model are as follows: first, the generation of hypotheses using an analogical abduction and the selection of hypotheses using consilience and simplicity; second, the expansion phase as resolution for the fallacy of affirming the consequent and the recycle phase as resolution for modus tollens involving auxiliary hypotheses. Finally, we examine the establishment process of Copernicus's Heliocentric Hypothesis and the main role of the history of science for the historical invalidity of this scientific inquiry model based on three examples of If/and/then type of explanation testing suggested by Lawson (International journal of science and Mathematics Education, 2005a, 3(1): 1-5) We claim that this hypotheticho-deduction process involving abduction approach produced favorable in scientific literacy rising for science teacher as well as students.
본 연구는 고대 그리스 시대의 수학적 추론의 발달 과정을 통하여 그 본질과 지도 방안을 탐색해 보고자 하였다. 먼저 문헌 연구로서 고대 그리스 시대의 수학적 추론의 발달 과정에 대한 Netz의 분석을 살펴보았고, Freudenthal의 국소적 조직화 이론과의 관련성을 분석해 보았다. 분석 결과 수학적 추론에서 용어와 기호가 자연 언어 중심으로 되는 것이 적절한 것으로 파악되었으며, 학생들의 직관에 근거하여 수학적 필연성을 형성하게 하는 지도 방안이 적절한 것으로 생각된다. 또한 다각형의 내각의 합을 소재로 귀납에 의한 발견과 정당화, 나아가 다각형으로의 일반화라는 패턴에 따른 지도 계열과 방안을 제시하였다.
본 연구에서는 문제해결에서 귀납적 추론의 과정을 분석하여 귀납적 추론의 단계를 0단계 문제 이해, 1단계 규칙성 인식, 2단계 자료 수집 실험 관찰, 3단계 추측(3-1단계)과 검증(3-2단계), 4단계 발전의 총 5단계로, 귀납적 추론의 흐름은 0단계에서 4단계로의 순차적인 흐름을 포함하여 자신이 찾은 규칙이나 추측에 대하여 반례를 발견하였을 때 대처하는 방식에 따라 다양하게 설정하였다. 또한 초등학교 6학년 학생 4명에 대한 사례 연구를 통하여 연구자가 설정한 귀납적 추론 단계와 흐름의 적절성을 확인하였고 귀납적 추론의 지도를 위한 시사점을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.