• Title/Summary/Keyword: direct test

Search Result 3,323, Processing Time 0.031 seconds

Evaluation of the geogrid-various sustainable geomaterials interaction by direct shear tests

  • Bahadir Ok;Huseyin Colakoglu;Umud Dagli
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.173-186
    • /
    • 2023
  • In order to prevent environmental pollution, initiatives to increase the sustainability of resources are supported by society. However, the performance of recycled materials does not generally match that of natural materials. This study looks into the use of geogrid to improve various types of recycled aggregates. For this purpose, five different recycled aggregates were created by recycling wastes from the construction industry. Besides, direct shear tests (DS tests) were carried out on these recycled aggregates to determine their shear strengths. Following that, a triaxial geogrid was placed in the recycled aggregates to provide reinforcement, and the DS tests were conducted on the reinforced recycled aggregates. The results of the tests were also compared to those of tests performed on natural aggregates (NA). In conclusion, it was found that the recycled aggregates have lower shear strengths than the NA. Nonetheless, when reinforced with geogrid, the shear strength of the recycled concrete aggregates (RCA) and construction and demolition wastes (CDW) exceeded that of the NA. Furthermore, the geogrid reinforcement increased the shear strength of the recycled crushed bricks (CB), though not to the level of the NA.

Empirical Analysis of the Changes in the Patterns of Chinese Firms' Outward Foreign Direct Investment in the Belt and Road Initiative Countries (중국 기업의 일대일로 국가에 대한 해외직접투자 패턴 변화에 관한 실증연구)

  • Wonchan Ra;Zu-Kweon Kim
    • Korea Trade Review
    • /
    • v.47 no.6
    • /
    • pp.307-333
    • /
    • 2022
  • In recent years, the outward foreign direct investment (oFDI) in the Belt and Road Initiative (BRI) by Chinese companies has significantly increased in size and changed in content. However, changes in the oFDI patterns between the pre- and post-BRI periods have not received sufficient attention from academia despite their theoretical and strategic significance. This paper reviewed existing research to establish seven hypotheses on changes in the oFDI patterns of Chinese companies investing in BRI countries and conducted empirical analyses to test the hypotheses using secondary data. The results showed that after the BRI agreement, Chinese oFDI in BRI countries was more active in less economically and less institutionally developed countries, that the oFDI by privately-owned enterprises (POEs) increased more than that of state-owned enterprises (SOEs), and that SOEs were more active in the social overhead capital (SOC) area while POEs were more active in the non-SOC area. The paper concludes with a summary, implications, and future research directions.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Technology Acceptance Model for Direct-to-Consumer Genetic Testing Service (소비자대상직접시행 유전자검사서비스의 기술수용모델)

  • Hyunjin Choi;Daecheol Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.191-201
    • /
    • 2024
  • The purpose of this study is to identify factors that influence consumers' acceptance intentions towards Direct-to-Consumer (DTC) Genetic Testing service. DTC genetic testing service can be considered in two aspects: the application of new technology in genetic testing customers can directly purchase and the services for receiving the test results customer can't directly analyze. Existing technology-based acceptance models have difficulty fully explaining consumers' acceptance intentions towards DTC genetic testing services. Therefore, this study aims to propose a new acceptance model considering these two characteristics. A survey was conducted with 377 potential consumers for this research. The analysis revealed that health interest, prior knowledge, subjective norms, innovativeness, perceived usefulness, and perceived value affect consumers' acceptance intentions. The results obtained through this study can help establish strategies and marketing plans necessary for the diffusion of services, such as DTC genetic testing services, that combine a new technology and a service. In the long term, the accumulated DTC genetic testing results data can contribute to the development of national genetic information infrastructure and preventive medical applications, as well as improve individuals' quality of life.

EXPERIMENTAL SIMULATION OF A DIRECT VESSEL INJECTION LINE BREAK OF THE APR1400 WITH THE ATLAS

  • Choi, Ki-Yong;Park, Hyun-Sik;Cho, Seok;Kang, Kyoung-Ho;Choi, Nan-Hyun;Kim, Dae-Hun;Park, Choon-Kyung;Kim, Yeon-Sik;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.655-676
    • /
    • 2009
  • The first-ever integral effect test for simulating a guillotine break of a DVI (Direct Vessel Injection) line of the APR1400 was carried out with the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) from the same prototypic pressure and temperature conditions as those of the APR1400. The major thermal hydraulic behaviors during a DVI line break accident were identified and investigated experimentally. A method for estimating the break flow based on a balance between the change in RCS inventory and the injection flow is proposed to overcome a direct break low measurement deficiency. A post-test calculation was performed with a best-estimate safety analysis code MARS 3.1 to examine its prediction capability and to identify any code deficiencies for the thermal hydraulic phenomena occurring during the DVI line break accidents. On the whole, the prediction of the MARS code shows a good agreement with the measured data. However, the code predicted a higher core level than did the data just before a loop seal clearing occurs, leading to no increase in the peak cladding temperature. The code also produced a more rapid decrease in the downcomer water level than was predicted by the data. These observable disagreements are thought to be caused by uncertainties in predicting countercurrent flow or condensation phenomena in a downcomer region. The present integral effect test data will be used to support the present conservative safety analysis methodology and to develop a new best-estimate safety analysis methodology for DVI line break accidents of the APR1400.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Effect of Zooplankton Exposures on the Biomass and Intracellular Microcystin in Microcystis aeruginosa and Planktothrix agadhii (동물플랑크톤 노출 강도가 유해남조 Microcystis aeruginosa와 Planktothrix agardhii의 생체량 및 세포내 microcystin함량변화에 미치는 영향)

  • Jang, Min-Ho;Jung, Jong-Mun;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.209-218
    • /
    • 2006
  • This study was to evaluate microcystin production by two strains of cyanobacteria (Microcystis aeruginosa and Planktothrix agardhii) in response to three different levels of direct (0,4,8 inds.) or indirect (0,25, 50% of zooplankton culture media filtrate) exposures to zooplankton (Daphnia magna and Moina macrocopa). The cell biomass and intracellular microcystin (MC) were measured everyday. The survival rates of zooplankton were evaluated for daily intervals for the direct exposure. The intracellular MC produced peaked on the day 3 or 4, and then decreased over the both exposure experiment. In the direct experiment, the MC values were significantly different among the control and zooplankton treatments (ZT; repeated measures-ANOVA: P< 0.039). The MC contents of P. agardhii strain (No.204) were significantly higher (Tukey test, P< 0.082) in ZT2 (8 inds.) than in ZT2 (4 inds.). On the peak day, the intracellular MC exposed to both zooplanktons was significantly higher than the control (One-way ANOVA, P< 0.021). Higher zooplankton survivals were observed in the M. aeruginosa strain (No. 111) rather than in high toxic P. agardhii strain. In the indirect experiment, the intracellular MC of the M. aeruginosa strain was significantly different among the control and zooplankton culture media filtrate (ZCMF)treatments (rm-ANOVA: P<0.004), The MC exposed ZCMF2 (50%) were significantly higher than in ZCMFI (25%: Tukey test, P< 0.025) for both strains. This study strongly supports the induced-defensive MC production of potentially toxic cyanobacteria in response to the presence of zooplankton.

Characteristics of Shear Strength Parameters of Various Soils by Direct Shear Test (직접전단시험에 의한 다양한 시료의 전단강도 특성)

  • Park, Choonsik;Jeong, Jeonggeun
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.584-595
    • /
    • 2018
  • This study conducted direct shear test on about 290 sorts of materials such as sandy soil, clayey soil and gravely soil to present proper standard on shear strength of soil. Shear strength of soil in large scale tends to show that angle of internal friction increases as sand contents grow and it ranges $23.5^{\circ}{\sim}34.9^{\circ}C$ with cohesion of 2.0 kPa~15.7 kPa. Elastic modulus was visibly distinct by load, and which increased approximately 80% as vertical load grows. Angle of internal friction arranging $15.0^{\circ}{\sim}28.6^{\circ}$ on clayey soil decreased as clay contents rises and cohesion increase in regular scale. Elastic modulus tends to increase initial elastic modulus with almost same growing rate. While angle of internal friction on gravely soil indicates $29.9^{\circ}{\sim}36.7^{\circ}$ which hardly shows distinctive features. According to test in detail, cohesion of SW (well-graded sand), SP (poorly-graded sand), SC (clayey sand) and SM (silty sand) indicates value by 94%, 78% and 59% comparing to SC, SW and SP respectively. Angle of internal friction of ML (low-liquid limit silt) and CL (low-liquid limit clay) appears almost same features, and MH (high-liquid limit silt) despite of 88% value of ML. Cohesion among them varies with similar growing rate.

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.

The Reliability of Balance, Gait, and Muscle Strength Test for the Elderly with Dementia: A Systematic Review

  • Lee, Han-Suk;Park, Sun-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.49-58
    • /
    • 2017
  • PURPOSE: To summarize the evaluation tools of balance [Berg Balance Scale (BBS), timed up and Go (TUG), forward reaching test (FRT)], gait [6 m walking Test (6MWT)], and strength [Chair Stand Test (CST)] for patients with dementia. METHODS: The following databases were searched: Pub MED, Cochrane, Sciences Direct, and Web of Sciences. The inclusion criteria were as follows: 1) repeated measurement design, 2) subjects with dementia, 3) use of testing tools such as the BBS, TUG, FRT, 6MWT, and CST, 4) report the reliability. One reviewer performed the quality assessment of diagnostic accuracy study and two evaluators performed data extraction independently. RESULTS: Six articles and one letter were included. The interrater reliability of 6MWT, TUG, and CST, were acceptable (ICC>.90). However, FRT had unacceptable reliability. In test-retest reliability, only BBS has acceptable reliability (ICC>.90). Others had various reliabilities. The risk of interrater reliability bias was low in all studies. However, the risk of bias of intrarater reliability was low in five studies and moderate in two studies. CONCLUSION: The interrater reliability of the 6MWT, TUG, and CST were acceptable. However, in test-retest reliability, only BBS has acceptable reliability. Therefore, we suggest the use of BBS to test the balance of dementia patients. In addition, the study of tool reliability according to the subtype of dementia is needed in the future.