DOI QR코드

DOI QR Code

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test

수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구

  • 이승훈 (순천대학교 토목공학과) ;
  • 정성훈 (순천대학교 토목공학과)
  • Received : 2022.01.25
  • Accepted : 2022.02.15
  • Published : 2022.02.28

Abstract

The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.

마찰 방향에 따른 전단 저항의 이방성을 지반 구조물에서 선택적으로 이용할 수가 있다. 예를 들어서, 축방향으로 하중을 가하는 깊은 기초, 소일 네일링, 타이백 등은 큰 전단 저항이 유발되므로 하중 전달 능력을 증가시키지만, 이와 반대로 말뚝 관입과 흙 시료 채취 등은 최소화된 전단 저항만 유발된다. 기존 연구는 뱀 비늘의 기하학적 형상과 유사한 표면 돌출부를 갖는 플레이트와 흙 경계면에서 유발되는 전단 저항 변화를 확인하였다. 본 논문에서는 표면 돌출부의 형상에 따른 경계면 마찰각의 변화를 정량적으로 평가하였다. 수정된 직접 전단 시험기를 이용하여 상대 밀도가 40%로 조성된 모래 시료에 대해 9개의 플레이트, 2개의 전단 방향(전단 시 돌출부 높이가 증가와 감소하는 방향), 그리고 3개의 초기 수직 응력(100kPa, 200kPa, 300kPa) 조건으로 총 51가지 경우를 실험 하였다. 실험 결과, 전단 응력은 돌출부 높이가 높을수록, 돌출부 길이가 짧을수록, 돌출부 높이가 증가하는 전단 방향에서 크게 나타났다.

Keywords

Acknowledgement

본 연구는 한국연구재단 우수신진연구(2021R1C1C1006003)의 지원으로 수행되었으며, 이에 감사드립니다

References

  1. ASTM Standard D 3080-04. (2004), Standard test method for direct shear test under consolidated drained condition, Annual Book of ASTM Standard, Vol.04.08, ASTM International, West Conshohocken, PA.
  2. Bae, J., Lee, J., Shin, S., and Kim, D. (2020), "Analysis of Vertical and Horizontal Behavior of Helical Piles in Sands Varying Helix Shapes and Locations", Journal of the Korean Society of Civil Engineers, Vol.40, No.4, pp.393-400. https://doi.org/10.12652/KSCE.2020.40.4.0393
  3. Bak, J., Lee, K., Choi , B.-H., and Ki m, D. (2019), "Numeri cal Analysis of Helical Pile Behavior Varying Number and Diameter of Helices", Journal of the Korean Society of Civil Engeneers, Vol.39, No.1, pp.211-217.
  4. DeJong, J. T., Burrall, M., Wilson, D. W., and Frost, J. D. (2017), "A Bio-Inspired Perspective for Geotechnical Engineering Innovation", Geotechnical Frontiers 2017, pp.862-870.
  5. Elkasabgy, M. and El Naggar, M. H. (2014), "Axial Compressive Response of Large-capacity Helical and Driven Steel Piles in Cohesive Soil", Canadian Geotechnical Journal, Vol.52, No.2, pp.224-243. https://doi.org/10.1139/cgj-2012-0331
  6. Elsherbiny, Z. H. and El Naggar, M. H. (2013), "Axial Compressive Capacity of Helical Piles from Field Tests and Numerical Study", Canadian Geotechnical Journal, Vol.50, No.12, pp.1191-1203. https://doi.org/10.1139/cgj-2012-0487
  7. Hong, Y.-H., Byun, Y.-H., Chae, J.-G., and Lee, J.-S. (2015), "Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test", Journal of the Korean Geotechnical Society, Vol.31, No.3, pp.51-62. https://doi.org/10.7843/KGS.2015.31.3.51
  8. Kim, B.-S., Shibuya, S., Park, S.-W., and Kato, S. (2012), "Effect of Opening on the Shear behavior of Granular Materials in Direct Shear Test", KSCE Journal of Civil Engineering, Vol.16, No.7, pp.1132-1142. https://doi.org/10.1007/s12205-012-1518-4
  9. Lee, D., Na, K., Lee, W., Kim, H.-N., and Choi, H. (2014), "Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles", Journal of Korean Geosynthetics Society, Vol.13, No.4, pp.77-85. https://doi.org/10.12814/jkgss.2014.13.4.077
  10. Martinez, A., DeJong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J., Bandini, P., Baser, T., Borela, R., Boulanger, R., Burrall, M., Chen, Y., Collins, C., Cortes, D., Dai, S., DeJong, T., Dottore, E. D., Dorgan, K., Fragaszy, R., Frost, J. D., Full, R., Ghayoomi, M., Goldman, D. I., Gravish, N., Guzman, I. L., Hambleton, J., Hawkes, E., Helms, M., Hu, D., Huang, L., Huang, S., Hunt, C., Irschick, D., Lin, H. T., Lingwall, B., Marr, A., Mazzolai, B., McInroe, B., Murthy, T., O'Hara, K., Porter, M., Sadek, S., Sanchez, M., Santamarina, C., Shao, L., Sharp, J., Stuart, H., Stutz, H. H., Summers, A., Tao, J., Tolley, M., Treers, L., Turnbull, K., Valdes, R., Paassen, L. v., Viggiani, G., Wilson, D., Wu, W., Yu, X., and Zheng, J. (2021), "Bio-inspired Geotechnical Engineering: Principles, Current Work, Opportunities and Challenges", In press for publication in Geotechnique, pp.1-19.
  11. Martinez, A., DeJong, J. T., Jaeger, R. A., and Khosravi, A. (2020), "Evaluation of Self-penetration Potential of a Bio-inspired Site Characterization Probe by Cavity Expansion Analysis", Canadian Geotechnical Journal, Vol.57, No.5, pp.706-716. https://doi.org/10.1139/cgj-2018-0864
  12. Martinez, A., Palumbo, S., and Todd Brian, D. (2019), "Bioinspiration for Anisotropic Load Transfer at Soil-Structure Interfaces", Journal of Geotechnical and Geoenvironmental Engineering, Vol.145, No.10, 04019074. https://doi.org/10.1061/(asce)gt.1943-5606.0002138
  13. O'Hara Kyle, B. and Martinez, A. (2020), "Monotonic and Cyclic Frictional Resistance Directionality in Snakeskin-Inspired Surfaces and Piles", Journal of Geotechnical and Geoenvironmental Engineering, Vol.146, No.11, 04020116. https://doi.org/10.1061/(asce)gt.1943-5606.0002368
  14. Shibuya, S., Koseki, J., and Kawaguchi, T. (2005), "Recent Developments in Deformation and Strength Testing of Geomaterials", Deformation Characteristics of Geomaterials: Recent Investigations and Prospects, pp.3-26.
  15. Stutz, H. H., Martinez, A., Heepe, L., Tram Tramsen, H., and Gorb, S. N. (2019), "Strength anisotropy at soil-structure interfaces with snake skin inspired structural surfaces", E3S Web Conf. 92, article 13008.
  16. Takada, N. (1993), "Mikasa's Direct Shear Apparatus, Test Procedures and Results", Geotechnical Testing Journal, Vol.16, No.3, pp.314-322. https://doi.org/10.1520/GTJ10052J