Effect of Zooplankton Exposures on the Biomass and Intracellular Microcystin in Microcystis aeruginosa and Planktothrix agadhii

동물플랑크톤 노출 강도가 유해남조 Microcystis aeruginosa와 Planktothrix agardhii의 생체량 및 세포내 microcystin함량변화에 미치는 영향

  • Jang, Min-Ho (National Institute for Environmental Studies) ;
  • Jung, Jong-Mun (Pusan Water Quality Institute, Waterworks HQ) ;
  • Joo, Gea-Jae (Department of Biology, Pusan National University)
  • 장민호 (일본국립환경연구소) ;
  • 정종문 (부산시 상수도사업본부 수질연구소) ;
  • 주기재 (부산대학교 생물학과)
  • Published : 2006.06.30

Abstract

This study was to evaluate microcystin production by two strains of cyanobacteria (Microcystis aeruginosa and Planktothrix agardhii) in response to three different levels of direct (0,4,8 inds.) or indirect (0,25, 50% of zooplankton culture media filtrate) exposures to zooplankton (Daphnia magna and Moina macrocopa). The cell biomass and intracellular microcystin (MC) were measured everyday. The survival rates of zooplankton were evaluated for daily intervals for the direct exposure. The intracellular MC produced peaked on the day 3 or 4, and then decreased over the both exposure experiment. In the direct experiment, the MC values were significantly different among the control and zooplankton treatments (ZT; repeated measures-ANOVA: P< 0.039). The MC contents of P. agardhii strain (No.204) were significantly higher (Tukey test, P< 0.082) in ZT2 (8 inds.) than in ZT2 (4 inds.). On the peak day, the intracellular MC exposed to both zooplanktons was significantly higher than the control (One-way ANOVA, P< 0.021). Higher zooplankton survivals were observed in the M. aeruginosa strain (No. 111) rather than in high toxic P. agardhii strain. In the indirect experiment, the intracellular MC of the M. aeruginosa strain was significantly different among the control and zooplankton culture media filtrate (ZCMF)treatments (rm-ANOVA: P<0.004), The MC exposed ZCMF2 (50%) were significantly higher than in ZCMFI (25%: Tukey test, P< 0.025) for both strains. This study strongly supports the induced-defensive MC production of potentially toxic cyanobacteria in response to the presence of zooplankton.

두 종의 초식성 동물플랑크톤(Daphnia magna. Moina macrocopa)의 직접노출 밀도차(0, 4, 8개체)와 동물플랑크톤 배양여과액(ZCMF) 농도차(0, 25, 50%)에 따른, 두남조 Microcystis aeruginosa와 Planktothrix agardhii의 생체량과 세포내 microcystin(MC)을 1일 간격으로 측정하였고, 직접노출실험의 경우 동물플랑크톤 생존륜을 1일 간격으로 관찰하였다. 동물플랑크톤 직접노출 실험 결과, 두 균주에서 세포내 MC함량이 증가하였으며 (rm-ANOVA: P< 0.039), P. agardhii균주에서는 4개체 처리군(ZT1)보다 8개체 처리군(ZT2)에서 통계적으로 유의한 수준으로 높은 세포내 MC값이 관찰되었다(Tukey test. P<0.082).세포내 MC가 최고값을 보인 3일 또는 4일째에, 처리군들은 대조군에 비하여 통계적으로 유의한 차이를 보였다(One-way ANOVA, P< 0.021). ZCMF에 노출시킨 M. aeruginosa균주에서 세포내 MC함량이 통계적으로 유의한 수준으로 차이가 있었다(rm-ANOVA: P< 0.004), 실험기간동안 세포내 MC값은 M. aeruginosa균주에서 25%처리군 보다 50%처리군에서 통계적으로 유의한 수준으로 높게 나타났다(Tukey test, Plt; 0.025). 본연구결과, 세포내 MC량은 초식성 동물플랑크톤의 직접노출 밀도차와 분비화학물질(infochemical)농도차에 의존하여 증가 혹은 변화될수 있는 가능성이 있는 것으로 나타났으며, 부영양호에서 독성 남조 번성 조절시, 이러한 가능성을 고려하여 생물조절이 이루어져야 할 것으로 보인다.

Keywords

References

  1. 김백호, 김보라, 한명수. 2005. 박테리아와 어류가 유해조류 Microcystis aeruginosa의 성장 및 형태변화에 미치는 영향, 육수지 38: 420-428
  2. 하 경, 장민호, 정종문, 주기재. 2003. 동물플랑크톤 배양여과 액에 의한 Microcystis aeruginosa의 성장, 형태 및 microcystin 생성량의 변화, 육수지 36: 1-8
  3. Brönmark, C. and L.-A. Hansson. 2000. Chemical communication in aquatic systems: an introduction. Oikos 88: 103-109 https://doi.org/10.1034/j.1600-0706.2000.880112.x
  4. Burks, R.L., E. Jeppesen and D.M. Lodge. 2000. Macrophyte and fish chemicals suppress Daphnia growth and life history traits. Oikos 88: 139-147 https://doi.org/10.1034/j.1600-0706.2000.880116.x
  5. Codd, G.A. 1995. Cyanobacterial toxins: occurrence, properties, and biological significance. Water Sci. Technol. 32: 146-159
  6. Codd. G.A. and K.G. Poon. 1988. Cyanobacterial Toxins, p. 283-296. In: Biochemictry of the Algae and Cyanobacteria (L.J. Rogers and J.R. Gallon, eds.). Clarendon Press, Oxford, England
  7. De Bernardi, R. and G. Giussani. 1990. Are blue-green algae suitable food for zooplankton? A review. Hydrobiologia 200/201: 29-41 https://doi.org/10.1007/BF02530326
  8. DeMott, W.R., Q.X. Zhang and W.W. Carmichael. 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36: 1346-1357 https://doi.org/10.4319/lo.1991.36.7.1346
  9. DeMott, W.R. 1999. Foraging strategies and growth inhibition in fives daphnids feeding on mixures of toxic cyanobacterium and green alga. Freshw. Biol. 42: 263-274 https://doi.org/10.1046/j.1365-2427.1999.444494.x
  10. DeMott, W.R., R.D. Gulati and E. Van Donk. 2001. Daphnia food limitation in three hypertrophic Dutch lakes: Evidence for exclusion of large-bodies species by interfering filaments of cyanobacteria. Limnol. Oceanogr. 46: 2054-2060 https://doi.org/10.4319/lo.2001.46.8.2054
  11. Dittmann, E. and T. Borner. 2005. Genetic contributions to the risk assessment of MC in the environment. Toxicol. Appl. Pharm. 203: 192-2000 https://doi.org/10.1016/j.taap.2004.06.008
  12. Fialkowska, E. and A. Pajdak-Stos. 1997. Inducible defence against a ciliate grazer, Pseudomicrothorax dubius, in two strains of Phormidium (cyanobacteria). Proc. R. Soc. Lond. B. 264: 937-941
  13. Fulton, R.S. and H.W. Paerl. 1987. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol. Oceanogr. 31: 1132-1138 https://doi.org/10.4319/lo.1986.31.5.1132
  14. Ghadouani, A., B. Pinel-Alloul, K. Plath, G.A. Codd and W. Lampert. 2004. Effects of Microcystis aeruginosa and purified MC-LR on the feeding behaviour of Daphnia pulicaria. Limnol. Oceanogr. 49: 666-679 https://doi.org/10.4319/lo.2004.49.3.0666
  15. Gustafsson, S., K. Rengefors and L.-A. Hansson. 2005. Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86: 2561-2567 https://doi.org/10.1890/04-1710
  16. Haney, J.F., D.J. Forsyth and M.R. James. 1994. Inhibition of zooplankton filtering rates by dissolved inhibitors produced by naturally occurring cyanobacteria. Arch. Hydrobiol. 132: 1-13
  17. Jang, M.-H., K. Ha, G.-J. Joo and N. Takamura. 2003a. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol. 48: 1540-1550 https://doi.org/10.1046/j.1365-2427.2003.01107.x
  18. Jang, M.-H. K. Ha and G.-J. Joo. 2003b. Toxin-mediated between cyanobacteria and native fish in the eutrophic Hoedong Reservoir, South Korea. J. Freshwater Ecol. 18: 639-646 https://doi.org/10.1080/02705060.2003.9664006
  19. Jang, M.-H., K. Ha, M.C. Lucas, G.-J. Joo and N. Takamura. 2004. Changes in MC production by Microcystis aeruginosa exposed to phytoplanktovorous and omnivorous fish. Aquat. Toxicol. 68: 51-59 https://doi.org/10.1016/j.aquatox.2004.02.002
  20. Kozak, A. and R. Goldyn. 2004. Zooplankton versus phytoand bacterioplankton in the Maltanski reservoir (Poland) during an extensive biomanipulation experiment. J. Plankton Res. 26: 37-48 https://doi.org/10.1093/plankt/fbh006
  21. Lampert, W., K.O. Rothhaupt and E. von Elert. 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr. 39: 1543-1550 https://doi.org/10.4319/lo.1994.39.7.1543
  22. Lampert, W. 1987. Laboratory studies on zooplanktoncyanobacteria interactions. New. Zeal. J. Mar. Fresh. 21: 483-490 https://doi.org/10.1080/00288330.1987.9516244
  23. Loose, C.J., E. Von Elert and P. Dawidowicz. 1993. Chemically- induced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329-337
  24. Lurling, M. and E. van Donk. 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr. 42: 783-788 https://doi.org/10.4319/lo.1997.42.4.0783
  25. Lurling, M. and von Elert. 2001. Colony formation in Scenedesmus: no contribution of urea in induction by a lipophilic Daphnia exudates. Limnol. Oceanogr. 46: 1809-1813 https://doi.org/10.4319/lo.2001.46.7.1809
  26. Muller-Navarra, D.C., M. Brett, A. Liston and C.R. Goldman. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74-76 https://doi.org/10.1038/47469
  27. Neilan, B.A., D. Jacobs and A.E. Goodman. 1995. Genetic Diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microb. 61: 3875-3883
  28. Oh, H.-M., S.J. Lee, M.-H. Jang and B.-D. Yoon. 2000. MC production by Microcystis aeruginosa in a phosphoruslimited chemostat. Appl. Environ. Microb. 66: 176-179 https://doi.org/10.1128/AEM.66.1.176-179.2000
  29. Porter, K.G. 1975. Viable gut passage of gelatinous green algae ingested by Daphnia. Verh. Int. Verein. Limnol. 19: 2840-2850
  30. Rapala, J., K. Sivonen, L. Christina and S.I. Niemelä. 1997. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. As a function of growth stimuli. Appl. Environ. Microbiol. 63: 2206-2212
  31. Sarnelle, O. and A.E. Wilson. 2005. Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol. Oceanogr. 50: 1565-1570 https://doi.org/10.4319/lo.2005.50.5.1565
  32. Tollrian, R. and S.I. Dodson. 1999. Inducible defenses in cladocera: constrains, costs, and multipredator environments, p. 177-202. In: Ecology and Evolution of Inducible Defense (Tollrian, R. and C.D. Harvell, eds.) Princeton University Press, Princeton, USA
  33. Kasai, F., M. Kawachi, M. Erata and M.M. Watanabe. 2004. NIES-Collection List of Strains. 7th (ed.) Microalga and Protozoa. National Institute for Environmental Studies, Tsukuba, Japan
  34. Wiackowski, K. and A. Staronska. 1999. The effect of predator and prey density on the induced defence of a ciliate. Funct. Ecol. 13: 59-65 https://doi.org/10.1046/j.1365-2435.1999.00282.x
  35. Wiegand, C. and S. Pflugmacher. 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharm. 203: 201-218 https://doi.org/10.1016/j.taap.2004.11.002
  36. Wiltshire, K.H. and W. Lampert. 1999. Urea excretion by Daphnia: A colony-inducing factor in Scenedesmus? Limnol. Oceanogr. 44: 1894-1903 https://doi.org/10.4319/lo.1999.44.8.1894
  37. Yoshida, T., Y. Yuki, S. Lei, H. Chinen, M. Yoshida, R. Kondo and S. Hiroishi. 2003. Quantitative detection of toxic strains of the cyanobacterial genus Microcystis by competitive PCR. Microb. Environ. 18: 16-23 https://doi.org/10.1264/jsme2.18.16