• Title/Summary/Keyword: direct projective module

Search Result 20, Processing Time 0.024 seconds

MODULES THAT SUBMODULES LIE OVER A SUMMAND

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.569-575
    • /
    • 2007
  • Let M be a nonzero module. M has the property that every submodule of M lies over a direct summand of M. We study some properties of such a module. The endomorphism ring of such a module is also studied. The relationships of such a module to the semi-regular modules, and to the semi-perfect modules are described.

  • PDF

The π-extending Property via Singular Quotient Submodules

  • Kara, Yeliz;Tercan, Adnan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.391-401
    • /
    • 2019
  • A module is said to be ${\pi}$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this article, we focus on the class of modules having the ${\pi}$-extending property by looking at the singularity of quotient submodules. By doing so, we provide counterexamples, using hypersurfaces in projective spaces over complex numbers, to show that being generalized ${\pi}$-extending is not inherited by direct summands. Moreover, it is shown that the direct sums of generalized ${\pi}$-extending modules are generalized ${\pi}$-extending.

Direct Sums of Strongly Lifting Modules

  • Atani, Shahabaddin Ebrahimi;Khoramdel, Mehdi;Pishhesari, Saboura Dolati
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.673-682
    • /
    • 2020
  • For the recently defined notion of strongly lifting modules, it has been shown that a direct sum is not, in general, strongly lifting. In this paper we investigate the question: When are the direct sums of strongly lifting modules, also strongly lifting? We introduce the notion of a relatively strongly projective module and use it to show if M = M1 ⊕ M2 is amply supplemented, then M is strongly lifting if and only if M1 and M2 are relatively strongly projective and strongly lifting. Also, we consider when an arbitrary direct sum of hollow (resp. local) modules is strongly lifting.

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

  • Chang, Chae-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • Keskin and Harmanci defined the family B(M,X) = ${A{\leq}M|{\exists}Y{\leq}X,{\exists}f{\in}Hom_R(M,X/Y),\;Ker\;f/A{\ll}M/A}$. And Orhan and Keskin generalized projective modules via the class B(M, X). In this note we introduce X-local summands and X-hollow modules via the class B(M, X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module P contains Rad(P), then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with $K{\in}B$(H, X), if $H{\oplus}H$ has the internal exchange property, then H has a local endomorphism ring.

PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER OF THE FORM Q = • ⇉ • → •

  • Park, Sangwon;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.429-436
    • /
    • 2009
  • We define a projective representation $M_1{^{\rightarrow}_{\rightarrow}}M_2{\rightarrow}M_3$ of a quiver $Q={\bullet}{^{\rightarrow}_{\rightarrow}}{\bullet}{\rightarrow}{\bullet}$ and consider their properties. Then we show that any projective representation $M_1{^{\rightarrow}_{\rightarrow}}M_2{\rightarrow}M_3$ of a quiver $Q={\bullet}{^{\rightarrow}_{\rightarrow}}{\bullet}{\rightarrow}{\bullet}$ is isomorphic to the quotient of a direct sum of projective representations $0{^{\rightarrow}_{\rightarrow}}0{\rightarrow}P,\;0{^{\rightarrow}_{\rightarrow}}P{\rightarrow\limits^{id}}P$ and $P{^{\rightarrow}_{\rightarrow}}^{e1}_{e2}P{\oplus}P{\rightarrow\limits^{id_{P{\oplus}P}}}P{\oplus}P$, where $e_1(a)=(a,0)$ and $e_2(a)=(0,a)$.

  • PDF

MODULE DERIVATIONS ON COMMUTATIVE BANACH MODULES

  • Amini, Massoud;Bodaghi, Abasalt;Shojaee, Behrouz
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.891-906
    • /
    • 2020
  • In this paper, the commutative module amenable Banach algebras are characterized. The hereditary and permanence properties of module amenability and the relations between module amenability of a Banach algebra and its ideals are explored. Analogous to the classical case of amenability, it is shown that the projective tensor product and direct sum of module amenable Banach algebras are again module amenable. By an application of Ryll-Nardzewski fixed point theorem, it is shown that for an inverse semigroup S, every module derivation of 𝑙1(S) into a reflexive module is inner.

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.

ON A GENERALIZATION OF ⊕-CO-COATOMICALLY SUPPLEMENTED MODULES

  • FIGEN ERYILMAZ;ESRA OZTURK SOZEN
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.146-159
    • /
    • 2023
  • In this paper, we define ⊕δ-co-coatomically supplemented and co-coatomically δ-semiperfect modules as a strongly notion of ⊕-co-coatomically supplemented and co-coatomically semiperfect modules with the help of Zhou's radical. We say that a module A is ⊕δ-co-coatomically supplemented if each co-coatomic submodule of A has a δ-supplement in A which is a direct summand of A. And a module A is co-coatomically δ-semiperfect if each coatomic factor module of A has a projective δ-cover. Also we define co-coatomically amply δ-supplemented modules and we examined the basic properties of these modules. Furthermore, we give a ring characterization for our modules. In particular, a ring R is δ-semiperfect if and only if each free R-module is co-coatomically δ-semiperfect.

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

REGULARITY AND SEMIPOTENCY OF HOM

  • Hakmi, Hamza
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.151-167
    • /
    • 2014
  • Let M, N be modules over a ring R and $[M,N]=Hom_R(M,N)$. The concern is study of: (1) Some fundamental properties of [M, N] when [M, N] is regular or semipotent. (2) The substructures of [M, N] such as radical, the singular and co-singular ideals, the total and others has raised new questions for research in this area. New results obtained include necessary and sufficient conditions for [M, N] to be regular or semipotent. New substructures of [M, N] are studied and its relationship with the Tot of [M, N]. In this paper we show that, the endomorphism ring of a module M is regular if and only if the module M is semi-injective (projective) and the kernel (image) of every endomorphism is a direct summand.