Honam Mathematical J. **45** (2023), No. 1, pp. 146–159 https://doi.org/10.5831/HMJ.2023.45.1.146

ON A GENERALIZATION OF ⊕-CO-COATOMICALLY SUPPLEMENTED MODULES

FİGEN ERYILMAZ AND ESRA ÖZTÜRK SÖZEN*

Abstract. In this paper, we define \bigoplus_{δ} -co-coatomically supplemented and co-coatomically δ -semiperfect modules as a strongly notion of \bigoplus co-coatomically supplemented and co-coatomically semiperfect modules with the help of Zhou's radical. We say that a module A is \bigoplus_{δ} -cocoatomically supplemented if each co-coatomic submodule of A has a δ -supplement in A which is a direct summand of A. And a module A is co-coatomically δ -semiperfect if each coatomic factor module of A has a projective δ -cover. Also we define co-coatomically amply δ -supplemented modules and we examined the basic properties of these modules. Furthermore, we give a ring characterization for our modules. In particular, a ring R is δ -semiperfect if and only if each free R-module is co-coatomically δ -semiperfect.

1. Introduction

In this study, we admit that all rings are with identity and all modules are unitary left modules unless otherwise stated. Let R be such a ring and A be such a module. By the notation $X \leq A$, we mean that X is a submodule of A. A submodule X of A is called *small* in A if $X+Y \neq A$ for any proper submodule Y of A, denoted by $X \ll A$, and we point with Rad(A), the sum of whole small submodules of A. Dual to this concept, a submodule X of A is called *essential* in A, by $X \leq A$, if the intersection of X is non-zero with the other submodules of A, except for $\{0\}$. It is known that the set $Z(A) = \{a \in A \mid Ann(a) \leq R\}$ is the singular submodule of A, where Ann(a) is an annihilator of a. The module A is entitled *singular* in case Z(A) = A. A submodule X of A is called *cofinite* whenever A/X is finitely generated. A module A is called *coatomic* if every proper submodule of A is contained in a maximal submodule of A. In addition to these, in [3] co-coatomic submodules are defined as a generalization of cofinite submodules as follows. If the factor module A/X is coatomic, then we say that $X \leq A$ is *co-coatomic*. A supplement submodule T of X in A is

Received September 12, 2022. Accepted October 28, 2022.

²⁰²⁰ Mathematics Subject Classification. 16D10, 16L30, 16D99.

Key words and phrases. co-coatomic submodule, \oplus_{δ} -co-coatomically supplemented module, co-coatomically δ -perfect module.

^{*}Corresponding author

minimal element of the set $\{Y \leq A | A = X + Y\}$ that equivalents A = X + Tand $X \cap T \ll T$. A module A is called *supplemented* if each submodule of Ahas a supplement in A [24]. If each submodule of A has a supplement in Athat is a direct summand of A, then the module A is called \oplus -*supplemented* [10]. Besides, cofinitely supplemented and \oplus -cofinitely supplemented modules are introduced by [2], [6] respectively, as follows. If every cofinite submodule of M has a supplement in A (that is a direct summand of A), then A is entitled a (\oplus) -cofinitely supplemented module.

In [23], the author generalized the concept of small submodules to the concept of δ -small submodules. $X \ll_{\delta} A$ denotes that X is a δ -small submodule of A which means X + Y is proper in A for any proper submodule Y of A with A/Y singular. Furthermore, the sum of all δ -small submodules of A shown by $\delta(A)$. Following, δ -supplemented modules as a general version of supplemented modules are introduced in [9]. A module A is entitled δ -supplemented if each submodule X of A has a δ -supplement T in A, i.e. A = X + T and $X \cap T \ll_{\delta} T$. In [1] and [15], a module A is called (\oplus) -cofinitely δ -supplemented, if each cofinite submodule of A has a δ -supplement in A (which is a direct summand of A).

In the paper [3], a generalization of \oplus -supplemented modules, defined as \oplus -co-coatomically supplemented modules, is given by the authors, which is also a restriction of \oplus -cofinitely supplemented modules. And also a module A is entitled *co-coatomically supplemented* if each co-coatomic submodule of A has a supplement in A.

Inspired from the definitions given above, in Section 2 we introduce \oplus_{δ} -cocoatomically supplemented modules and co-coatomically δ -supplemented modules as follows. We say that a module A is \oplus_{δ} -co-coatomically supplemented if each co-coatomic submodule of A has a δ -supplement in A which is a direct summand of A. And, a module A is entitled co-coatomically δ -supplemented if each co-coatomic submodule of A has a δ -supplement in A. We give main results related with these concepts. In general, any factor module of a δ supplemented module is δ -supplemented, but this claim is not valid for \oplus_{δ} -cocoatomically supplemented modules (see in Example 2.5). A factor module of a \oplus_{δ} -co-coatomically supplemented module, which is constructed with respect to a fully invariant submodule of the module, is \oplus_{δ} -co-coatomically supplemented. Being \oplus_{δ} -co-coatomically supplemented module is inherited for the submodules of a module A which are co-coatomic, fully invariant and also a direct summand in A. Each direct summand of a \oplus_{δ} -co-coatomically supplemented module with SSP (summand sum property) is \oplus_{δ} -co-coatomically supplemented. Besides, each co-coatomic direct summand of a \oplus_{δ} -co-coatomically supplemented module with the property (D_3) is \oplus_{δ} -co-coatomically supplemented. Any finite direct sum of a \oplus_{δ} -co-coatomically supplemented module is \oplus_{δ} -co-coatomically supplemented. A module A is \oplus_{δ} -co-coatomically supplemented if and only if every maximal submodule of A has a δ -supplement which is a direct summand of A if and only if A is δ -radical or δ -local. At the end of this section, we give a ring characterization for our modules such that a ring R is δ -semiperfect if and only if every finitely generated free R-module is \oplus_{δ} -co-coatomically supplemented.

In Section 3, we define co-coatomically δ -semiperfect modules as a generalization of δ -semiperfect modules and also a restriction of cofinitely δ -semiperfect modules. If each coatomic factor module of a module A has a projective δ cover, then A is called co-coatomically δ -semiperfect. The concepts of \oplus_{δ} -cocoatomically supplemented modules and co-coatomically δ -semiperfect modules coincide for projective modules. Every homomorphic image (and δ -cover) of a co-coatomically δ -semiperfect module is co-coatomically δ -semiperfect. If Ais a projective δ -semiperfect module, then every A-generated module is cocoatomically δ -semiperfect. Owing to this fact, we give a ring characterization for our modules. A ring R is δ -semiperfect if and only if each free R-module is co-coatomically δ -semiperfect.

2. \oplus_{δ} -co-coatomically and co-coatomically δ -supplemented modules

Definition 2.1. Let A be a module. If every coatomic submodule of A has a δ -supplement in A, then A is called co-coatomically δ -supplemented.

Let A be a co-coatomically δ -supplemented module and K be any cofinite submodule of A. Since the factor module A/K is finitely generated then it is also coatomic. Thus, K is coatomic in A. Hence K has a δ -supplement in A. It means that A is cofinitely δ -supplemented.

Since each factor module of a coatomic module is coatomic, then a coatomic module A is co-coatomically δ -supplemented if and only if A is δ -supplemented.

Definition 2.2. Let A be a module. If every co-coatomic submodule of A has a δ -supplement which is a direct summand of A, then A is entitled \bigoplus_{δ} -co-coatomically supplemented.

We can write the below hierarchy for a module M.

 \oplus_{δ} -supp. module $\Rightarrow \oplus_{\delta}$ -co-coatomically supp. module $\Rightarrow \oplus_{\delta}$ -cofinitely supp. module

It is clear that \oplus_{δ} -supplemented modules are \oplus_{δ} -co-coatomically supplemented in general. Besides it can be seen that the converse statement need not to be true.

Example 2.3. The \mathbb{Z} -module \mathbb{Q} is a \bigoplus_{δ} -co-coatomically supplemented module as it has no proper co-coatomic submodule. However $\mathbb{Z}\mathbb{Q}$ is not \bigoplus_{δ} -supplemented.

Additionally, \oplus_{δ} -co-coatomically supplemented modules are also \oplus -cofinitely supplemented. Now, let us show an example verifying the converse may not

be true. Also, own to this example, it can be noticed that the direct sum of \bigoplus_{δ} -co-coatomically supplemented modules may not be \bigoplus_{δ} -co-coatomically supplemented.

Recall from that a ring R is called δ -perfect (δ -semiperfect) if every R-module (every simple R-module) has a projective δ -cover.

Example 2.4. Let F be a field and

$$R = F[[x]] = \left\{ f(x) = \sum_{k=0}^{\infty} a_k x^k, \ a_k \in F \right\}.$$

Here R is a local ring which is also δ -semiperfect but not δ -perfect. As every free R-module is \oplus -cofinitely δ -supplemented over a δ -semiperfect ring, in particular, $_{R}R^{(\mathbb{N})}$ is also \oplus -cofinitely δ -supplemented. However, the coatomic submodule $Rad(_{R}R^{(\mathbb{N})}) = \delta(_{R}R^{(\mathbb{N})})$ does not have a δ -supplement as R is local by [17, Proposition 2.5] and [4, Theorem 1], respectively. Hence $_{R}R^{(\mathbb{N})}$ is not \oplus_{δ} -co-coatomically supplemented.

During the below exercise, we point that a factor module of a \oplus_{δ} -co-coatomically supplemented module need not to be \oplus_{δ} -co-coatomically supplemented.

Example 2.5. [8, Example 2.2] Let R be a commutative local ring that is not a valuation ring and assume that $s \ge 2$. Then, it can be found a finitely presented indecomposable module $A = R^{(s)}/K$ that can not be generated by fewer than s elements. With [7, Corollary 1], $R^{(s)}$ is a \bigoplus_{δ} -co-coatomically supplemented. Nevertheless, A is not \bigoplus_{δ} -co-coatomically supplemented by [20, Example 2.1] and [17, Example 2.8].

Recall from [11] that a submodule X of A is entitled fully invariant submodule of A if $g(X) \leq X$ for every $g \in End(A)$, where $End(A) = \{g \mid g : A \to A \text{ is a homomorphism}\}$. If every submodule of A is fully invariant, then A is called a duo module.

Theorem 2.6. Let A be a \oplus_{δ} -co-coatomically supplemented module and X be a fully invariant submodule of A. Then A/X is \oplus_{δ} -co-coatomically supplemented.

Proof. Let N/X be a co-coatomic submodule of A/X. Then

$$\left(A/X\right)/\left(N/X\right) \cong A/N$$

is coatomic and N is a co-coatomic submodule of A. Therefore, there exists a δ -supplement K of N that is a direct summand in A. Then it can be written that A = N + K, $N \cap K \ll_{\delta} K$ and $A = K \oplus K_1$. Following, it is obvious that (K + X)/X is a δ -supplement of N/X in A/X. Note that [11, Lemma 2.1], $X = (K \cap X) \oplus (K_1 \cap X)$ as X is fully invariant. Using this, it can be seen that $A/X = ((K + X)/X) \oplus ((K_1 + X)/X)$. Hence, A/X is \oplus_{δ} -co-coatomically supplemented.

Figen ERYILMAZ and Esra ÖZTÜRK SÖZEN

Corollary 2.7. If A is a \oplus_{δ} -co-coatomically supplemented module, then $A/\delta(A)$ is also a \oplus_{δ} -co-coatomically supplemented module.

Corollary 2.8. If A is a \oplus_{δ} -co-coatomically supplemented duo module and $X \leq A$, then A/X is \oplus_{δ} -co-coatomically supplemented.

Theorem 2.9. Let A be a \bigoplus_{δ} -co-coatomically supplemented module and X be a co-coatomic fully invariant submodule of A which is also a direct summand in A. Then, X is a \bigoplus_{δ} -co-coatomically supplemented module.

Proof. Let Y be a co-coatomic submodule of X. By the hypothesis, it can be found a coatomic submodule X_1 of A where $A = X \oplus X_1$ with X_1 is coatomic. Following, the factor module $A/Y = [(X \oplus X_1)/Y] \oplus X_1 \cong (X/Y) \oplus X_1$ is coatomic as a direct summand of two coatomic modules. As A is \oplus_{δ} -cocoatomically supplemented, it can be found a δ -supplement Z of Y in A where $A = Z \oplus Z_1, A = Y + Z, Y \cap Z \ll_{\delta} Z$. Now, using modular law we can write $X = (Y + Z) \cap X = Y + (Z \cap X)$. Also, we have $X = (X \cap Z) \oplus (X \cap Z_1)$ as X is fully invariant. Thus, $X \cap Z$ is a direct summand of X. Furthermore, $Y \cap (X \cap Z) = Y \cap Z \ll_{\delta} Z$ and so $Y \cap (X \cap Z) \ll_{\delta} X \cap Z$ by [14, Lemma 1.2.(3)]. Hence, X is \oplus_{δ} -co-coatomically supplemented. \Box

Theorem 2.10. Let A be a \oplus_{δ} -co-coatomically supplemented module, $X \leq A$. If (X + Y) / X is a direct summand of A / X for every direct summand of Y of A, then A / X is a \oplus_{δ} -co-coatomically supplemented module.

Proof. Suppose that *N*/*X* is a co-coatomic submodule of *A*/*X* where *N* is a co-coatomic submodule of *A* and *X* ≤ *N*. Since *A* is a \oplus_{δ} -co-coatomically supplemented module, it can be found a direct summand *T* of *A* where *A* = *N*+*T*, $N \cap T \ll_{\delta} T$ and $A = T \oplus T'$ where *T*' is any submodule of *A*. Now, we have A/X = N/X + [(X+T)/X]. Also, by the hypothesis, (X+T)/X is a direct summand of *A*/*X*. Let *f* : $A \to A/X$ be a canonical epimorphism. Since $N \cap T \ll_{\delta} T$ and $(N/X) \cap ((X+T)/X) = (N \cap (X+T))/X = (X + (N \cap T))/X = f(N \cap T) \ll_{\delta} (X+T)/X$ by [23, Lemma 1.5], it follows that (X+T)/X is a δ-supplement of *N*/*X* in *A*/*X* which is a direct summand.

An *R*-module A has SSP (Summand Sum Property) if the sum of two direct summand of A is again a direct summand of A [22].

Theorem 2.11. If A is a \bigoplus_{δ} -co-coatomically supplemented module with SSP, then each direct summand of A is \bigoplus_{δ} -co-coatomically supplemented.

Proof. For any direct summand X_1 of A, we have $A = X_1 \oplus X'$ for some $X' \leq A$. Suppose that Y is a direct summand of A. Since A has SSP, we have $A = (X_1 + Y) \oplus T$ for some $T \leq A$. Therefore, the equality $A/X' = (X_1 + Y)/X' \oplus (T + X')/X'$ implies that A/X' is a \oplus_{δ} -co-coatomically supplemented module by Theorem 2.10.

150

Recall from [18] that an *R*-module *A* is entitled *distributive* if lattice of its submodules is a distributive lattice, equivalently for submodules *X*, *Y* and *Z* of *A*, $Z + (X \cap Y) = (Z + X) \cap (Z + Y)$ or $Z \cap (X + Y) = (Z \cap X) + (Z \cap Y)$.

Theorem 2.12. Let A be a \oplus_{δ} -co-coatomically supplemented distributive module. Then A/X is a \oplus_{δ} -co-coatomically supplemented module for every submodule X of A.

Proof. Suppose that Y is a direct summand of A. Then $A = Y \oplus T$ for some submodule T of A and we can write A/X = [(X + Y)/X] + [(X + T)/X]. By distributive property of A, we have $X = X + (Y \cap T) = (X + Y) \cap (X + T)$. This implies that $A/X = [(X + Y)/X] \oplus [(X + T)/X]$ and therefore A/X is a \oplus_{δ} -co-coatomically supplemented module by Theorem 2.10.

Recall from [10] that a module A is called a (D_3) -module if, for the submodules $A_1, A_2 \leq_{\oplus} A$ with $A = A_1 + A_2$, A satisfies $A_1 \cap A_2 \leq_{\oplus} A$.

Proposition 2.13. Let A be a \oplus_{δ} -co-coatomically supplemented module with (D_3) . Then each co-coatomic direct summand of A is \oplus_{δ} -co-coatomically supplemented.

Proof. Assume that X is a co-coatomic direct summand of A and Y is a co-coatomic submodule of X. By the hypothesis, $A = X \oplus X_1$ and $A/X = X_1$ is coatomic. Therefore, $A/Y = ((X \oplus X_1)/Y) = (X/Y) \oplus X_1$ is coatomic as a direct sum of two coatomic modules, [7, Corollary 5]. Since A is \oplus_{δ} -co-coatomically supplemented, there exists a δ -supplement Z of Y in A which is a direct summand of A. Following, we have $X = X \cap A = X \cap (Y + Z) = (X \cap Z) + Y$. As A has the property $(D_3), X \cap Z$ is also a direct summand of X. So $Y \cap (X \cap Z) = Y \cap Z \ll_{\delta} X \cap Z$ by [14, Lemma 1.2.(3)]. Hence, X is \oplus_{δ} -co-coatomically supplemented.

Recall from [5] that a module A is called δ -local if $\delta(A) \ll_{\delta} A$ and $\delta(A)$ is a maximal submodule of A. It is well known that a ring R is a left δ -V-ring if and only if $\delta(A) = 0$ for each left R-module A (see [19]).

Proposition 2.14. Let A be a module over the δ -V-ring R. Then A is \bigoplus_{δ} -co-coatomically supplemented if and only if A is semisimple.

Proof. The sufficiency is clear. For the necessity, note that A is also cofinitely δ -supplemented module because it is \oplus_{δ} -co-coatomically supplemented. Then $A/Cof_{\delta}(A)$ has no maximal submodule by [1, Theorem 2.9] where $Cof_{\delta}(A)$ is the sum of all submodules of A that are δ -supplements of maximal submodules of A. Following, we have $A/Cof_{\delta}(A) = Rad(A/Cof_{\delta}(A)) = 0$ and this implies that $A = Cof_{\delta}(A)$. Write $A = \sum S_i$, where each S_i is a δ -supplement of a maximal submodule P_i of A. Then by [16, Lemma 2.22] each S_i is either δ -local or semisimple projective. Assume that S_i is semisimple projective. Here, as R is a δ -V-ring, we have $\delta(S_i) = S_i = 0$ which contradicts with the maximality of P_i in A. Hence, A is only the sum of δ -local submodules S_i of

A. Thus, $\delta(S_i) = 0$ is maximal in S_i and so each S_i is simple. Hence, A is semisimple as a sum of simple submodules.

Now we give a useful lemma to evidence that the finite sum of \bigoplus_{δ} -co-coatomically supplemented modules are also \bigoplus_{δ} -co-coatomically supplemented.

Lemma 2.15. Let A be module and X, Y be submodules of A where X is cocoatomically δ -supplemented, Y is co-coatomic and X+Y has a δ -supplement Sin A. Then $X \cap (Y+S)$ has a δ -supplement T in X and S+T is a δ -supplement of Y in A.

Proof. By the hypothesis, we have that A = (X + Y) + S, $(X + Y) \cap S \ll_{\delta} S$. Furthermore,

$$X/[X \cap (Y+S)] \cong (X+Y+S)/(Y+S) = A/(Y+S)$$
$$\cong (A/Y)/[(Y+S)/Y]$$

is coatomic. Thus, $X \cap (Y+S) \leq X$ is co-coatomic. Therefore, there exists a δ -supplement T of $X \cap (Y+S)$ in X, i.e., $[X \cap (Y+S)] + T = X$ and $[X \cap (Y+S)] \cap T = (Y+S) \cap T \ll_{\delta} T$. Then, A = X + Y + S = Y + S + Tand

$$Y \cap (S+T) \le S \cap (Y+T) + T \cap (S+Y) \le S \cap (Y+X) + T \cap (S+Y)$$

$$\ll_{\delta} S + T.$$

Hence, S + T is a δ -supplement of Y in A.

Proposition 2.16. Any finite direct sum of \bigoplus_{δ} -co-coatomically supplemented modules is \bigoplus_{δ} -co-coatomically supplemented.

Proof. Let $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$, where each A_i is \oplus_{δ} -co-coatomically supplemented. We claim that A is \oplus_{δ} -co-coatomically supplemented. To complete the proof, it is enough to show that the assertion is true in case n = 2. Let $A = A_1 \oplus A_2$ and X be a co-coatomic submodule of A. Then $A = A_1 + A_2 + X$ and 0 is a δ -supplement of $A_1 + A_2 + X$ in A. For the submodule $A_2 \cap (A_1 + X)$ of A_2 ,

$$A_2/[A_2 \cap (A_1 + X)] \cong (A_1 + A_2 + X)/(A_1 + X) \cong (A/X)/[(A_1 + X)/X]$$

is coatomic as a factor module of a coatomic module A/X where $X \leq A$ is cocoatomic. Hence, $A_2 \cap (A_1 + X) \leq A_2$ is co-coatomic. By the hypothesis, there exists a δ -supplement D of $A_2 \cap (A_1 + X)$ which is a direct summand of A_2 . Thus, D is a δ -supplement of $A_1 + X$ by Lemma 2.15. By the same way given above, it can be shown that $A_1/A_1 \cap (X + D)$ is coatomic and $A_1 \cap (X + D) \leq$ A_1 is co-coatomic. By the assumption, $A_1 \cap (X + D)$ has a δ -supplement Sin X that is a direct summand of A_1 . Again using Lemma 2.15 D + S is a δ -supplement of X in A, where $D \oplus S$ is a direct summand of A. Finally, $A = A_1 \oplus A_2$ is \oplus_{δ} -co-coatomically supplemented. \Box Recall from [13] that a module A is called δ -radical if $\delta(A) = A$, and denote the sum of all δ -radical submodules of the module A by $P_{\delta}(A)$, that is, $P_{\delta}(A) = \sum \{U \leq A : \delta(U) = U\}$.

Proposition 2.17. The following statements are equivalent for an indecomposable module A.

(1) Each co-coatomic submodule of A has a δ -supplement which is a direct summand.

(2) Each maximal submodule of A has a δ -supplement which is a direct summand.

(3) A is δ -local or δ -radical.

Proof. (1) \Rightarrow (2) It is obvious that as every maximal submodule is co-coatomic.

 $(2) \Rightarrow (3)$ Assume that A is not δ -radical. Then, $\delta(A) \neq A$, i.e. there exists an essential maximal submodule P of A which has a δ -supplement T that is a direct summand of A. As A is indecomposable, then T = 0 or T = A.

Case 1: Let T = 0. This contradicts with the maximality of P.

Case 2: Let T = A. By [16, Lemma 2.22], T is either projective semisimple or δ -local. If T is projective semisimple, then $\delta(T) = \delta(A) = A$ which contradicts with the case that A is δ -radical. From here, it forces A to be δ -local.

 $(3) \Rightarrow (1)$ Let X be any co-coatomic submodule of A. As A/X is coatomic, there exists a maximal submodule of A/X containing all proper submodule of A/X. Therefore, A has a maximal submodule P containing X. Since A is indecomposable, the intersection of P with the other non-zero submodules of A is non-zero, that is, the submodule $P \leq A$ is essential maximal and so A is not δ -radical. It forces A to be δ -local from the assumption. It follows that A is \oplus_{δ} -supplemented by [17, Proposition 3.1]. Finally, A is \oplus_{δ} -co-coatomically supplemented. \Box

Corollary 2.18. Let A be an indecomposable module that is not δ -radical. A is δ -local if and only if A is \oplus_{δ} -co-coatomically supplemented.

Theorem 2.19. A ring R is δ -semiperfect if and only if each finitely generated free R-module is \oplus_{δ} -co-coatomically supplemented.

Proof. (\Rightarrow) Let R be a δ -semiperfect ring and A be a finitely generated free R-module. By Lemma 3.5 in [12], A is $\oplus -\delta$ -supplemented. Hence, A is \oplus_{δ} -co-coatomically supplemented.

(⇐) By the hypothesis, $_{R}R$ is \oplus_{δ} -co-coatomically supplemented. Hence, R is a δ -semiperfect ring by Lemma 3.5 in [12].

Corollary 2.20. For an arbitrary ring R, the following conditions are equivalent:

(1) R is δ -semiperfect.

(2) $_{R}R$ is $\oplus -\delta$ -supplemented.

(3) $_{R}R$ is \oplus_{δ} -co-coatomically supplemented

(4) $_{R}R$ is \oplus -cofinitely δ -supplemented.

Proof. (1) \Rightarrow (2) It follows from [12, Lemma 3.5].

 $(2) \Rightarrow (3)$ It is clear.

(3) \Rightarrow (4) Since every cofinite submodule is also co-coatomic, the proof is evident.

 $(4) \Rightarrow (1)$ It is obvious by [1, Theorem 3.9].

3. Co-coatomically δ -semiperfect modules

In the paper [21], the concept of δ -semiperfect modules and the connections between δ -supplemented modules and δ -semiperfect modules are investigated. Let A and N be modules, an epimorphism $f: A \to N$ is entitled a δ -cover in case ker $(f) \ll_{\delta} A$. A δ -cover $f: A \to N$ is entitled a projective δ -cover in case A is a projective module (see [23]).

Definition 3.1. Let A be a module. If each coatomic factor module of A has a projective δ -cover, then A is called co-coatomically δ -semiperfect.

Proposition 3.2. Let A be a projective module. Then A is co-coatomically δ -semiperfect if and only if A is \oplus_{δ} -co-coatomically supplemented.

Proof. (\Rightarrow) Let A/K be a coatomic factor module of A. As A is \oplus_{δ} -cocoatomically supplemented, it can be found submodules N and N_1 where $A = N \oplus N_1$, A = K + N and $N \cap K \ll_{\delta} N$. Here, N is projective because Ais projective. For the inclusion homomorphism $i : N \to A$ and the canonical epimorphism $\varphi : A \to A/K$, we have $\varphi \circ i : N \to A/K$ is an epimorphism and ker $(\varphi \circ i) = N \cap K \ll_{\delta} N$.

(\Leftarrow) Let K be a co-coatomic submodule of A. So A/K is coatomic. There exists a projective δ -cover $\sigma : P \to A/K$ by the hypothesis. Then there are submodules X, Y of A where $A = X \oplus Y$ with $X \leq K$ and $Y \cap K \ll_{\delta} A$ by [23, Lemma 2.4]. If we use [23, Lemma 1.3(2)], we obtain that $Y \cap K \ll_{\delta} Y$, i.e., Y is a δ -supplement of K.

Recall that in [15] A is entitled *cofinitely* δ -semiperfect if each finitely generated factor module of A has a projective δ -cover.

Definition 3.3. Let A be a module. If each co-coatomic submodule of A has ample δ -supplements in A, A is called co-coatomically amply δ -supplemented.

It is clear that every co-coatomically amply δ -supplemented module is cocoatomically δ -supplemented.

Proposition 3.4. The following statements are equivalent for a projective module *A*:

(1) A is co-coatomically δ -semiperfect.

154

(2) A is \oplus_{δ} -co-coatomically supplemented.

(3) Each co-coatomic submodule K of A, A has a decomposition $A = T \oplus T''$ where $T'' \leq K$ and $K \cap T \ll_{\delta} T$.

(4) A is co-coatomically amply δ -supplemented by δ -supplements that have projective δ -covers.

(5) A is co-coatomically δ -supplemented by δ -supplements that have projective δ -covers.

Proof. (1) \Leftrightarrow (2) The proof follows from Proposition 3.2.

 $(2) \Rightarrow (3)$ Assume that K is a co-coatomic submodule of A. By the assumption, there exist submodules T and T' of A where A = K + T, $K \cap T \ll_{\delta} T$ and $A = T \oplus T'$. Since A is projective, there exists a submodule T'' of A such that $A = T \oplus T''$ such that $T'' \leq K$ from [22, 41.14].

 $(3) \Rightarrow (2)$ The proof is clear.

 $(1) \Rightarrow (4)$ Suppose that K be a co-coatomic submodule of A and A = K + T for some submodule T of A. By the assumption, we have a projective δ -cover $\mu : P \to A/K$, for a projective module P. Since P is projective and $A/K \cong T/(K \cap T)$, there exists a homomorphism $h : P \to T$. Since $\ker(\mu) \ll_{\delta} P$ and $h(\ker\mu) = Im(h) \cap K \cap T = Im(h) \cap K$, $Im(h) \cap K \ll_{\delta} Im(h)$. And so $T = Im(h) + (K \cap T)$ because μ is an epimorphism. Thus Im(h) is a δ -supplement of $K \cap T$ in T. From here, $A = K + T = K + Im(h) + (K \cap T) = K + Im(h)$ and $Im(h) \cap K \ll_{\delta} Im(h)$, i.e. Im(h) is a δ -supplement of K in A and $Im(h) \subseteq T$. Finally P is projective δ -cover of Im(h) because $\ker(h) \leq \ker(\mu)$ and $\ker(h) \ll_{\delta} P$.

 $(4) \Rightarrow (5)$ The proof is clear.

 $(5) \Rightarrow (1)$ Let K be a co-coatomic submodule of A and T be a δ -supplement of K in A. Then T is a δ -cover of $T/(K \cap T)$. Hence, each projective δ -cover of T is also projective δ -cover of $T/(K \cap T)$. Finally, we say that A/K has a projective δ -cover because $A/K \cong T/(K \cap T)$ and so A is co-coatomically δ -semiperfect.

Theorem 3.5. Each homomorphic image of a co-coatomically δ -semiperfect module is co-coatomically δ -semiperfect.

Proof. Let A be a co-coatomically δ -semiperfect module. We consider a homomorphism $\sigma : A \to K$. Suppose that $\sigma(A)/N$ be a coatomic factor module of $\sigma(A)$. There exists an homomorphism $\mu : A \to \sigma(A)/N$, $\mu(a) = \sigma(a) + N$ for every $a \in A$. Since A is co-coatomically δ -semiperfect, $A/\sigma^{-1}(N) \cong \sigma(a)/N$ that is $\sigma(A)/N$ has a projective δ -cover. As a result $\sigma(A)$ is co-coatomically δ -semiperfect.

Corollary 3.6. Each factor module of a co-coatomically δ -semiperfect module is co-coatomically δ -semiperfect.

Corollary 3.7. If A is a projective co-coatomically δ -semiperfect module, then each factor module of A is also \bigoplus_{δ} -co-coatomically supplemented.

Figen ERYILMAZ and Esra ÖZTÜRK SÖZEN

Proof. The proof follows from Corollary 3.6 and Proposition 3.4.

Theorem 3.8. Every δ -cover of a co-coatomically δ -semiperfect module is co-coatomically δ -semiperfect.

Proof. Suppose that K is a δ -cover of a module A and $\sigma : A \to K$ be an epimorphism with ker $(\sigma) \ll_{\delta} A$. For a co-coatomic submodule N of A, the homomorphism $\phi : A/N \to K/\sigma(N)$, defined by $\phi(a+N) = \sigma(a) + \sigma(N)$ is an epimorphism. From here, we say that $K/\sigma(N)$ is an epimorphic image of A/N and ker $(\phi) = (N + \ker(\sigma))/N$. Let $X/N \leq A/N$ such that $[(N + \ker(\sigma))/N] + X/N = A/N$ and (A/N)/(X/N) is singular. Then $X + \ker(\sigma) = A$ and $A/X \cong (A/N)/(X/N)$ is singular. Since ker $(\sigma) \ll_{\delta} A$, A = X. It follows that ker $(\phi) \ll_{\delta} A/N$. If we consider $K/\sigma(N) = \phi(A/N) \cong (A/N)/(N + \ker(\sigma))/N$, then we say that $K/\sigma(N)$ is coatomic By the assumption, $K/\sigma(N)$ has a projective δ -cover, i.e., $\mu : P \to K/\sigma(N)$. As P is projective, it can be found a homomorphism $h : P \to A/N$ such that the next diagram is commutative

$$\begin{array}{ccc} & P \\ & \swarrow & & \downarrow_{\mu} \\ A/N & \xrightarrow{\phi} & K/\sigma\left(N\right) \end{array}$$

i.e., $\phi \circ h = \mu$. So $A/N = h(P) + \ker(\phi)$. Since $\ker(\phi) \ll_{\delta} A/N$, there exists a semisimple projective submodule T of $\ker(\phi)$ where A/N = h(P) + T. We take a homomorphism $\varphi : P \oplus T \to A/N$, defined by $\varphi(p,t) = h(p) + N$. It is an epimorphism and $\ker(\varphi) = \ker(h) \oplus 0$. Since $\ker(h) \leq \ker(\mu) \ll_{\delta} P$, then $\ker(h) \oplus 0 \ll_{\delta} P \oplus T$. Finally, $P \oplus T$ is projective δ -cover of the module A/N.

Corollary 3.9. Let $N \ll_{\delta} A$ and A/N be co-coatomically δ -semiperfect. The module A is co-coatomically δ -semiperfect.

Corollary 3.10. If $f : P \to A$ be a projective δ -cover of a module A, then the following conditions are equivalent:

(1) A is co-coatomically δ -semiperfect.

(2) P is co-coatomically δ -semiperfect.

(3) P is \oplus_{δ} -co-coatomically supplemented.

Proof. $(1) \Rightarrow (2)$ It is clear that by Theorem 3.8.

 $(2) \Rightarrow (1)$ It is obvious that by Theorem 3.5.

 $(2) \Leftrightarrow (3)$ It is obvious that by Proposition 3.2.

Theorem 3.11. Let A_i be a projective module for every $i \in I$ where I is a finite index set. Then every direct summand A_i is co-coatomically δ -semiperfect if and only if $A = \bigoplus_{i \in I} A_i$ is a co-coatomically δ -semiperfect module.

156

Proof. (\Rightarrow) Since every A_i is projective and co-coatomically δ -semiperfect, then every A_i is \oplus_{δ} -co-coatomically supplemented and so A is \oplus_{δ} -co-coatomically supplemented by Proposition 3.2, Proposition 2.16, respectively. Therefore, A is a co-coatomically δ -semiperfect module by Proposition 3.2.

(\Leftarrow) Suppose that $A = \bigoplus_{i \in I} A_i$ be a co-coatomically δ -semiperfect module. With Corollary 3.6, A_i is co-coatomically δ -semiperfect because $A_j \cong \prod_{i \in I} (A_i - A_i)$

$$A / \left(\bigoplus_{i \in I \setminus \{j\}} A_i \right) \text{ for every } i \in I.$$

Let A be an R-module. Recall from [22] that an R-module N is called (finitely) A-generated if there is an epimorphism $h: A^{(I)} \to N$ for some (finite) index set I.

Lemma 3.12. Let A be a projective module. If A is δ -semiperfect, then each finitely A-generated module is co-coatomically δ -semiperfect. Moreover, if A is finitely generated, the converse holds.

Proof. Assume that X be a finitely A-generated module. Since A is a δ -semiperfect projective module, A is co-coatomically δ -semiperfect and so \oplus_{δ} -co-coatomically supplemented. It follows from Proposition 2.16 that a finite direct sum of A, i.e., for any finite set I, $A^{(I)}$ is \oplus_{δ} -co-coatomically supplemented. Also by Proposition 3.2, $A^{(I)}$ is co-coatomically δ -semiperfect. Therefore X is co-coatomically δ -semiperfect by Corollary 3.6. Since every finitely generated module is coatomic, the converse is clear.

Theorem 3.13. For an arbitrary ring R, the following conditions are equivalent:

(1) R is δ -semiperfect.

(2) Each finitely generated free *R*-module is co-coatomically δ-semiperfect.
(3) Each finitely generated free *R*-module is δ-semiperfect.

Proof. (1) \Rightarrow (2) It follows from Proposition 3.2 and Theorem 3.11 that R is co-coatomically δ -semiperfect.

 $(2) \Rightarrow (3)$ The proof is clear.

 $(3) \Rightarrow (1)$ By Proposition 3.2.

References

- K. Al-Takhman, Cofinitely δ-supplemented and cofinitely δ-semiperfect modules, Int. J. Algebra 1 (2007), no. 12, 601–613.
- [2] R. Alizade, G. Bilhan, and F. P. Smith, Modules whose maximal submodules have supplements, Comm. Algebra 29 (2001), no. 6, 2389–2405.
- [3] R. Alizade and S. Güngör, ⊕-co-coatomically supplemented and co-coatomically semiperfect modules, Hacet J Math Stat. 47 (2018), no. 6, 1417–1426.
- [4] E. Büyükaşık and C.Lomp, Rings whose modules are wakly perfect, Math. Scand. 105 (2009), no. 1, 25–30.

Figen ERYILMAZ and Esra ÖZTÜRK SÖZEN

- [5] E. Büyükaşık and C. Lomp, When δ-semiperfect rings are semiperfect, Turk. J. Math. 34 (2010), no. 3, 317–324.
- [6] H. Çalışıcıand A. Pancar, ⊕-cofinitely supplemented modules, Czechoslov. Math. J. 54 (2004), no. 129, 1083–1088.
- [7] G. Güngöroğlu, Coatomic modules, Far East J. Math. Sci. Special Volume, Part II (1998), 153–162.
- [8] A. Idelhadh and R. Tribak, On some properties of ⊕-supplemented modules, International Journal of Mathematics Scientifics 63 (2003), 4373–4387.
- [9] M. T. Koşan, δ-lifting and δ-supplemented modules, Algebra Colloq. 14 (2007), no. 1, 53–60.
- [10] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, London Math. Soc. Lecture Note Ser. 147, Cambridge University Press, 1990.
- [11] A. Ç. Özcan and M. Alkan, Duo modules, Glasg. Math. J. 48 (2006), 533-545.
- [12] Y. Talebi and M.H. Pour, On ⊕ − δ-supplemented modules, J. Algebra Number Theory: Adv. Appl. 1 (2009), no. 2, 89–97.
- [13] Y. Talebi and B. Talaee, Generalizations of D_{11} and D_{11}^+ modules, Asian-Eur. J. Math. **2** (2009), no. 2, 285–293.
- [14] Y. Talebi and A. R. M. Hamzekolaei, Closed weak δ -supplemented modules, JP J. Algebra, Number Theory and Appl. **13** (2009), no. 2, 193–208.
- [15] L. V. Thuyet, M. T. Koşan, and T.C. Quynh, On cofinitely δ-semiperfect modules, Acta Math. Vietnam. 33 (2008), no. 2, 197–207.
- [16] R. Tribak, Finitely Generated δ-supplemented modules are amply δ-supplemented, Bull. Aust. Math. Soc. 86 (2012), 430–439.
- [17] R. Tribak, When finitely generated δ-supplemented modules are supplemented, Algebra Colloq. 22 (2015), no. 1, 119–130.
- [18] A. Tuganbaev, Distributive Modules and Related Topics, Gordon and Breach Science Publishers, 1999.
- [19] B. Ungör, S. Hahcioğlu, and A. Harmanci, On a class of δ-supplemented modules, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 3, 703–717.
- [20] Y. Wang and Q. Sun, A note on ⊕-cofinitely supplemented modules, Int. J. Math. Math. Sci. 2007 (2007), Article ID. 10836.
- [21] Y. Wang, δ-small submodules and δ-supplemented modules, Int. J. Math. Math. Sci. (2007), Article ID. 58132.
- [22] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
- [23] Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq. 7 (2000), no. 3, 305–318.
- [24] H. Zöschinger, Komplementierte moduln über dedekindringen, J. Algebra 29 (1974), 42–56.

Figen ERYILMAZ Department of Mathematical Sciences, Faculty of Education, Ondokuz Mayıs University, Samsun-TURKEY. E-mail: fyuzbasi@omu.edu.tr

Esra ÖZTÜRK SÖZEN Department of Mathematics, Sinop University, Sinop-TURKEY. E-mail: esozen@sinop.edu.tr