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ON A GENERALIZATION OF @¢-CO-COATOMICALLY
SUPPLEMENTED MODULES

FIGEN ERYILMAZ anD ESRA OZTURK SOZEN*

Abstract. In this paper, we define @g-co-coatomically supplemented
and co-coatomically J-semiperfect modules as a strongly notion of &®-
co-coatomically supplemented and co-coatomically semiperfect modules
with the help of Zhou’s radical. We say that a module A is @g-co-
coatomically supplemented if each co-coatomic submodule of A has a
d—supplement in A which is a direct summand of A. And a module A is
co-coatomically d-semiperfect if each coatomic factor module of A has a
projective é-cover. Also we define co-coatomically amply J-supplemented
modules and we examined the basic properties of these modules. Further-
more, we give a ring characterization for our modules. In particular, a
ring R is d-semiperfect if and only if each free R-module is co-coatomically
d-semiperfect.

1. Introduction

In this study, we admit that all rings are with identity and all modules are
unitary left modules unless otherwise stated. Let R be such a ring and A be
such a module. By the notation X < A, we mean that X is a submodule of A.
A submodule X of A is called small in A if X+Y # A for any proper submodule
Y of A, denoted by X <« A, and we point with Rad(A), the sum of whole small
submodules of A. Dual to this concept, a submodule X of A is called essential
in A, by X < A, if the intersection of X is non-zero with the other submodules
of A, except for {0}. It is known that the set Z(A) = {a € A| Ann(a) < R}
is the singular submodule of A, where Ann(a) is an annihilator of a. The
module A is entitled singular in case Z(A) = A. A submodule X of A is called
cofinite whenever A/X is finitely generated. A module A is called coatomic if
every proper submodule of A is contained in a maximal submodule of A. In
addition to these, in [3] co-coatomic submodules are defined as a generalization
of cofinite submodules as follows. If the factor module A/X is coatomic, then
we say that X < A is co-coatomic. A supplement submodule T of X in A is
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minimal element of the set {Y < A| A= X + Y} that equivalents A= X + T
and X NT < T. A module A is called supplemented if each submodule of A
has a supplement in A [24]. If each submodule of A has a supplement in A
that is a direct summand of A, then the module A is called ®—supplemented
[10]. Besides, cofinitely supplemented and @-cofinitely supplemented modules
are introduced by [2], [6] respectively, as follows. If every cofinite submodule of
M has a supplement in A (that is a direct summand of A), then A is entitled
a (@-)cofinitely supplemented module.

In [23], the author generalized the concept of small submodules to the con-
cept of d-small submodules. X <5 A denotes that X is a §-small submodule
of A which means X +Y is proper in A for any proper submodule Y of A with
A/Y singular. Furthermore, the sum of all é-small submodules of A shown by
d(A). Following, §-supplemented modules as a general version of supplemented
modules are introduced in [9]. A module A is entitled d-supplemented if each
submodule X of A has a d-supplement T'in A,i.e. A= X+T and XNT <5 T.
In [1] and [15], a module A is called (@®-)cofinitely d-supplemented, if each cofi-
nite submodule of A has a d-supplement in A (which is a direct summand of
A).
In the paper [3], a generalization of @-supplemented modules, defined as ¢-
co-coatomically supplemented modules, is given by the authors, which is also
a restriction of @-cofinitely supplemented modules. And also a module A is
entitled co-coatomically supplemented if each co-coatomic submodule of A has
a supplement in A.

Inspired from the definitions given above, in Section 2 we introduce ®s-co-
coatomically supplemented modules and co-coatomically d-supplemented mod-
ules as follows. We say that a module A is @s-co-coatomically supplemented
if each co-coatomic submodule of A has a d-supplement in A which is a direct
summand of A. And, a module A is entitled co-coatomically J-supplemented
if each co-coatomic submodule of A has a d-supplement in A. We give main
results related with these concepts. In general, any factor module of a §-
supplemented module is §-supplemented, but this claim is not valid for @s-co-
coatomically supplemented modules (see in Example 2.5). A factor module of a
®s-co-coatomically supplemented module, which is constructed with respect to
a fully invariant submodule of the module, is ®s-co-coatomically supplemented.
Being @s-co-coatomically supplemented module is inherited for the submod-
ules of a module A which are co-coatomic, fully invariant and also a direct
summand in A. Each direct summand of a @s-co-coatomically supplemented
module with SSP (summand sum property) is é@s-co-coatomically supple-
mented. Besides, each co-coatomic direct summand of a @s-co-coatomically
supplemented module with the property (Dj3) is @s-co-coatomically supple-
mented. Any finite direct sum of a @s-co-coatomically supplemented module
is @g-co-coatomically supplemented. A module A is @4-co-coatomically sup-
plemented if and only if every maximal submodule of A has a §-supplement
which is a direct summand of A if and only if A is d-radical or d-local. At the
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end of this section, we give a ring characterization for our modules such that a
ring R is d-semiperfect if and only if every finitely generated free R-module is
®s-co-coatomically supplemented.

In Section 3, we define co-coatomically d-semiperfect modules as a general-
ization of §-semiperfect modules and also a restriction of cofinitely J-semiperfect
modules. If each coatomic factor module of a module A has a projective 6-
cover, then A is called co-coatomically d-semiperfect. The concepts of ®g-co-
coatomically supplemented modules and co-coatomically §-semiperfect modules
coincide for projective modules. Every homomorphic image (and d-cover) of
a co-coatomically §-semiperfect module is co-coatomically §-semiperfect. If A
is a projective d-semiperfect module, then every A-generated module is co-
coatomically d-semiperfect. Owing to this fact, we give a ring characterization
for our modules. A ring R is §-semiperfect if and only if each free R-module is
co-coatomically d-semiperfect.

2. Ps-co-coatomically and co-coatomically d-supplemented mod-
ules

Definition 2.1. Let A be a module. If every coatomic submodule of A has
a d-supplement in A, then A is called co-coatomically §-supplemented.

Let A be a co-coatomically d-supplemented module and K be any cofinite
submodule of A. Since the factor module A/K is finitely generated then it is
also coatomic. Thus, K is coatomic in A. Hence K has a d-supplement in A.
It means that A is cofinitely d-supplemented.

Since each factor module of a coatomic module is coatomic, then a coatomic
module A is co-coatomically d-supplemented if and only if A is §-supplemented.

Definition 2.2. Let A be a module. If every co-coatomic submodule of
A has a d-supplement which is a direct summand of A, then A Is entitled
®s-co-coatomically supplemented.

We can write the below hierarchy for a module M.

@s-supp. module = @s-co-coatomically supp. module = @s-cofinitely
supp. module

It is clear that @s-supplemented modules are @s-co-coatomically supple-
mented in general. Besides it can be seen that the converse statement need not
to be true.

Example 2.3. The Z-module Q is a @®s-co-coatomically supplemented
module as it has no proper co-coatomic submodule. However 7Q is not ®s-
supplemented.

Additionally, &4-co-coatomically supplemented modules are also @-cofinitely
supplemented. Now, let us show an example verifying the converse may not
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be true. Also, own to this example, it can be noticed that the direct sum
of @s-co-coatomically supplemented modules may not be @g-co-coatomically
supplemented.

Recall from that a ring R is called d-perfect (d-semiperfect) if every R-
module (every simple R-module) has a projective d-cover.

Example 2.4. Let F be a field and

R:F[[x]}:{f(x):Zakxk, akEF}.
k=0

Here R is a local ring which is also §-semiperfect but not §-perfect. As ev-
ery free R-module is ®-cofinitely d-supplemented over a §-semiperfect ring, in
particular, RR™) is also @®-cofinitely §-supplemented. However, the coatomic
submodule Rad (RR(N)) =94 (RR(N)) does not have a d-supplement as R is
local by [17, Proposition 2.5] and [4, Theorem 1], respectively. Hence pR™) is
not @s-co-coatomically supplemented.

During the below exercise, we point that a factor module of a ®s-co-
coatomically supplemented module need not to be @s-co-coatomically supple-
mented.

Example 2.5. [8, Example 2.2] Let R be a commutative local ring that is
not a valuation ring and assume that s > 2. Then, it can be found a finitely
presented indecomposable module A = R®) /K that can not be generated by
fewer than s elements. With [7, Corollary 1], R®®) is a @;-co-coatomically
supplemented. Nevertheless, A is not @s-co-coatomically supplemented by [20,
Example 2.1] and [17, Example 2.8].

Recall from [11] that a submodule X of A is entitled fully invariant submod-
ule of Aif g (X) < X for every g € End(A), where End(A) ={g|g: A — Ais
a homomorphism}. If every submodule of A is fully invariant, then A is called
a duo module.

Theorem 2.6. Let A be a ®s-co-coatomically supplemented module and
X be a fully invariant submodule of A. Then A/X is ®;-co-coatomically sup-
plemented.

Proof. Let N/X be a co-coatomic submodule of A/X. Then
(A/X)/(N/X) = A/N

is coatomic and N is a co-coatomic submodule of A. Therefore, there exists
a 0—supplement K of N that is a direct summand in A. Then it can be
written that A = N+ K, NN K <5 K and A = K @ K;. Following, it is
obvious that (K + X) /X is a §-supplement of N/X in A/X. Note that [11,
Lemma 2.1], X = (KNX) ® (K;NX) as X is fully invariant. Using this,
it can be seen that A/X = (K+X)/X)® (K1 + X)/X). Hence, A/X is
®s-co-coatomically supplemented. O
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Corollary 2.7. If A is a ®s-co-coatomically supplemented module, then
A/d (A) is also a @s-co-coatomically supplemented module.

Corollary 2.8. If A is a ®s-co-coatomically supplemented duo module and
X < A, then A/X is ®s-co-coatomically supplemented.

Theorem 2.9. Let A be a ®s-co-coatomically supplemented module and X
be a co-coatomic fully invariant submodule of A which is also a direct summand
in A. Then, X is a ®s-co-coatomically supplemented module.

Proof. Let Y be a co-coatomic submodule of X. By the hypothesis, it can be
found a coatomic submodule X; of A where A = X @ X; with X is coatomic.
Following, the factor module 4/Y = [(X @ X1) /Y] & X1 =2 (X/Y) & X,
is coatomic as a direct summand of two coatomic modules. As A is @s-co-
coatomically supplemented, it can be found a J-supplement Z of Y in A where
A=72d®7Z,, A=Y +7Z,YNZ<Ks Z. Now, using modular law we can write
X=Y+2)NX =Y+ (ZnNnX). Also, we have X = (X NZ) ® (X NZ) as
X is fully invariant. Thus, X N Z is a direct summand of X. Furthermore,
YN(XNZ)=YNZ<s ZandsoYN(XNZ)<s XNZ by [14, Lemma
1.2.(3)]. Hence, X is @&s-co-coatomically supplemented. O

Theorem 2.10. Let A be a ®g-co-coatomically supplemented module, X <
A If (X +Y) /X is a direct summand of A/ X for every direct summand of Y
of A, then A/ X is a ®s-co-coatomically supplemented module.

Proof. Suppose that N/X is a co-coatomic submodule of A/X where N is a
co-coatomic submodule of A and X < N. Since A is a ®-co-coatomically sup-
plemented module, it can be found a direct summand T of A where A = N+T,
NNT <5 T and A = T & T" where T'is any submodule of A. Now, we
have A/X = N/X 4+ [(X+T)/X]. Also, by the hypothesis, (X +T)/X
is a direct summand of A/X. Let f : A — A/X be a canonical epimor-
phism. Since NNT <5 T and (N/X)N(X+T)/X)=(Nn(X+T))/X =
(X+(NNT))/X = f(NNT) <5 (X+T)/X by [23, Lemma 1.5], it fol-
lows that (X +T)/X is a d-supplement of N/X in A/X which is a direct

summand. O

An R-module A has SSP (Summand Sum Property) if the sum of two direct
summand of A is again a direct summand of A [22].

Theorem 2.11. If A is a Pg-co-coatomically supplemented module with
SSP, then each direct summand of A is @g-co-coatomically supplemented.

Proof. For any direct summand X; of A, we have A = X7 @ X' for some
X’ < A. Suppose that Y is a direct summand of A. Since A has SSP, we
have A = (X1 +Y)® T for some T' < A. Therefore, the equality A/X' =
(X14Y)/X'®(T+ X’) /X’ implies that A/ X’ is a @s-co-coatomically sup-
plemented module by Theorem 2.10. O
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Recall from [18] that an R-module A is entitled distributive if lattice of its
submodules is a distributive lattice, equivalently for submodules X, Y and Z
of A, Z+(XNY)=Z+X)N(Z+Y)or ZN(X+Y)=(ZNnX)+(ZNY).

Theorem 2.12. Let A be a ®s-co-coatomically supplemented distributive
module. Then A/X is a @s-co-coatomically supplemented module for every
submodule X of A.

Proof. Suppose that Y is a direct summand of A. Then A =Y &T for some
submodule T of A and we can write A/X =[(X+Y) /X]|+[(X +T)/X]. By
distributive property of A, we have X = X + (Y NT) = (X +Y)N (X +1T).
This implies that A/X = [(X +Y)/X]® [(X +T) /X] and therefore A/X is
a Pg-co-coatomically supplemented module by Theorem 2.10. O

Recall from [10] that a module A is called a (D3)-module if, for the sub-
modules A;,43 <g A with A = A; + Ay, A satisfies 41 N Ay <g A.

Proposition 2.13. Let A be a @g-co-coatomically supplemented module
with (Ds). Then each co-coatomic direct summand of A is @s-co-coatomically
supplemented.

Proof. Assume that X is a co-coatomic direct summand of A and Y is a
co-coatomic submodule of X. By the hypothesis, A = X ® X; and A/X = X,
is coatomic. Therefore, A/Y = (X ® X;)/Y) = (X/Y) & X; is coatomic
as a direct sum of two coatomic modules, [7, Corollary 5]. Since A is @s-co-
coatomically supplemented, there exists a d—supplement Z of Y in A which
is a direct summand of A. Following, we have X = X NA=XnN{Y +2) =
(XNZ)+Y. As A has the property (D3), X N Z is also a direct summand of
X. SoYN(XNZ)=YNZ<s XNZ by [14, Lemma 1.2.(3)]. Hence, X is
@s-co-coatomically supplemented. O

Recall from [5] that a module A is called 6—local if § (A) <5 A and § (A) is
a maximal submodule of A. It is well known that a ring R is a left 6-V-ring if
and only if 6 (4) = 0 for each left R-module A (see [19]).

Proposition 2.14. Let A be a module over the §-V-ring R. Then A is
@®g-co-coatomically supplemented if and only if A is semisimple.

Proof. The sufficiency is clear. For the necessity, note that A is also cofinitely
d-supplemented module because it is @s-co-coatomically supplemented. Then
A/Cofs (A) has no maximal submodule by [1, Theorem 2.9] where Cofs (A)
is the sum of all submodules of A that are J-supplements of maximal submod-
ules of A. Following, we have A/Cofs (A) = Rad (A/Cofs (A)) = 0 and this
implies that A = Cofs (A). Write A = > S;, where each S; is a d—supplement
of a maximal submodule P; of A. Then by [16, Lemma 2.22 ] each S; is ei-
ther §-local or semisimple projective. Assume that S; is semisimple projective.
Here, as R is a 0-V-ring, we have J (5;) = S; = 0 which contradicts with the
maximality of P; in A. Hence, A is only the sum of é-local submodules S; of
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A. Thus, 6 (S;) = 0 is maximal in S; and so each S; is simple. Hence, 4 is
semisimple as a sum of simple submodules. O

Now we give a useful lemma to evidence that the finite sum of @®s-co-
coatomically supplemented modules are also &s-co-coatomically supplemented.

Lemma 2.15. Let A be module and X ,Y be submodules of A where X is co-
coatomically §-supplemented, Y is co-coatomic and X +Y has a d-supplement S
in A. Then XN (Y + S) has a é-supplement T in X and S+T is a §-supplement
of Y in A.

Proof. By the hypothesis, we have that A = (X +Y)+S, (X + Y)NS < S.
Furthermore,

X/[XN(Y+8)]2(X+Y+8)/(Y+S5)=A4/(Y +85)
=(A/Y) /(Y +5)/Y]

is coatomic. Thus, X N (Y +5) < X is co-coatomic. Therefore, there exists
a d—supplement 7' of X N (Y +S5) in X, e, XNY +95)]+T = X and
XNY+9NT=Y+5SNT<sT. Then, A=X+Y+S=Y+S5S+T
and

YNnS+T)<SNY+D)+TNnS+Y)<SNY +X)+TN(S+Y)
Ls S+T.

Hence, S + T is a §-supplement of Y in A. O

Proposition 2.16. Any finite direct sum of @®g-co-coatomically supple-
mented modules is @g-co-coatomically supplemented.

Proof. Let A = A1 ® Ay @ --- B A, where each A; is ®s-co-coatomically
supplemented. We claim that A is @4-co-coatomically supplemented. To com-
plete the proof, it is enough to show that the assertion is true in case n = 2. Let
A= A;P Ay and X be a co-coatomic submodule of A. Then A = A; + A, + X
and 0 is a d-supplement of A; + A2+ X in A. For the submodule A3N(4; + X)
of Ag,

Ao/ [Aa N (A1 + X)) = (A1 + A + X) /(A1 + X) = (4/X) /(AL + X) /X]

is coatomic as a factor module of a coatomic module A/X where X < A is co-
coatomic. Hence, AoN(A4; + X) < Aj is co-coatomic. By the hypothesis, there
exists a d—supplement D of A N (A1 + X) which is a direct summand of A,.
Thus, D is a d-supplement of A; + X by Lemma 2.15. By the same way given
above, it can be shown that A;/A4; N (X + D) is coatomic and 41N (X + D) <
A; is co-coatomic. By the assumption, A; N (X 4+ D) has a d-supplement S
in X that is a direct summand of A;. Again using Lemma 2.15 D + S is a
d-supplement of X in A, where D @ S is a direct summand of A. Finally,
A=A ® Ay is Ps-co-coatomically supplemented. O]
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Recall from [13] that a module A is called d-radical if §(A) = A, and denote
the sum of all -radical submodules of the module A by Ps (A), that is, Ps (A) =
S{U<SA:§(U)=U}.

Proposition 2.17. The following statements are equivalent for an inde-
composable module A.

(1) Each co-coatomic submodule of A has a —supplement which is a direct
summand.

(2) Each maximal submodule of A has a 0—supplement which is a direct
summand.

(3) A is 6-local or d-radical.

Proof. (1) = (2) It is obvious that as every maximal submodule is co-
coatomic.

(2) = (3) Assume that A is not d-radical. Then, 6 (4) # A, i.e. there exists
an essential maximal submodule P of A which has a §-supplement 1" that is a
direct summand of A. As A is indecomposable, then T'=0 or T' = A.

Case 1: Let T' = 0. This contradicts with the maximality of P.

Case 2: Let T = A. By [16, Lemma 2.22], T is either projective semisim-
ple or d-local. If T is projective semisimple, then ¢ (T') = 6 (4) = A which
contradicts with the case that A is d-radical. From here, it forces A to be
d-local.

(3) = (1) Let X be any co-coatomic submodule of A. As A/X is coatomic,
there exists a maximal submodule of A/X containing all proper submodule of
A/X. Therefore, A has a maximal submodule P containing X. Since A is
indecomposable, the intersection of P with the other non-zero submodules of
A is non-zero, that is, the submodule P < A is essential maximal and so A is
not d-radical. It forces A to be d-local from the assumption. It follows that A
is @s-supplemented by [17, Proposition 3.1]. Finally, A is @s-co-coatomically
supplemented. O

Corollary 2.18. Let A be an indecomposable module that is not §-radical.
A is §-local if and only if A is @s-co-coatomically supplemented.

Theorem 2.19. A ring R is d-semiperfect if and only if each finitely gen-
erated free R-module is ®g-co-coatomically supplemented.

Proof. (=) Let R be a J-semiperfect ring and A be a finitely generated
free R-module. By Lemma 3.5 in [12], A is @& — d-supplemented. Hence, A is
@g-co-coatomically supplemented.

(<) By the hypothesis, grR is ®s-co-coatomically supplemented. Hence, R
is a d-semiperfect ring by Lemma 3.5 in [12]. O

Corollary 2.20. For an arbitrary ring R, the following conditions are equiv-
alent:

(1) R is 6-semiperfect.

(2) rR is ® — §-supplemented.
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(3) rR is ®s-co-coatomically supplemented
(4) rR is @-cofinitely §-supplemented.

Proof. (1) =(2) It follows from [12, Lemma 3.5 ].

(2) =(3) It is clear.

(3) =(4) Since every cofinite submodule is also co-coatomic, the proof is
evident.

(4) =(1) It is obvious by [1, Theorem 3.9]. O

3. Co-coatomically §-semiperfect modules

In the paper [21], the concept of d-semiperfect modules and the connections
between J-supplemented modules and §-semiperfect modules are investigated.
Let A and N be modules, an epimorphism f : A — N is entitled a J-cover in
case ker (f) <s A. A d-cover f: A — N is entitled a projective d-cover in case
A is a projective module (see [23]).

Definition 3.1. Let A be a module. If each coatomic factor module of A
has a projective é-cover, then A is called co-coatomically §-semiperfect.

Proposition 3.2. Let A be a projective module. Then A is co-coatomically
d-semiperfect if and only if A is @s-co-coatomically supplemented.

Proof. (=) Let A/K be a coatomic factor module of A. As A is ®s-co-
coatomically supplemented, it can be found submodules N and N; where A =
N@& Ny, A=K+ N and NN K <5 N. Here, N is projective because A
is projective. For the inclusion homomorphism ¢ : N — A and the canonical
epimorphism ¢ : A — A/K, we have g oi: N — A/K is an epimorphism and
ker (poi)=NNK <5 N.

(<) Let K be a co-coatomic submodule of A. So A/K is coatomic. There
exists a projective d-cover o : P — A/K by the hypothesis. Then there are
submodules X, Y of A where A = X @Y with X < K and Y NK <5 A by
[23, Lemma 2.4]. If we use [23, Lemma 1.3(2)], we obtain that Y N K <, Y,
i.e., Y is a d-supplement of K. O

Recall that in [15] A is entitled cofinitely 0-semiperfect if each finitely gen-
erated factor module of A has a projective d-cover.

Definition 3.3. Let A be a module. If each co-coatomic submodule of A has
ample 0-supplements in A, A is called co-coatomically amply §-supplemented.

It is clear that every co-coatomically amply §-supplemented module is co-
coatomically é-supplemented.

Proposition 3.4. The following statements are equivalent for a projective
module A:
(1) A is co-coatomically §-semiperfect.



@&—Co-Coatomically Supplemented Modules 155

(2) A is ®s-co-coatomically supplemented.

(3) Each co-coatomic submodule K of A, A has a decomposition A = TdT”
where T" < K and KNT <5 T.

(4) A is co-coatomically amply §-supplemented by §-supplements that have
projective § -covers.

(5) A is co-coatomically §-supplemented by d-supplements that have pro-
Jjective §-covers.

Proof. (1) < (2) The proof follows from Proposition 3.2.

(2) = (3)Assume that K is a co-coatomic submodule of A. By the assump-
tion, there exist submodules T and 7" of A where A=K+ T, KNT <5 T
and A =TT’ Since A is projective, there exists a submodule 7" of A such
that A =T & T"” such that 7" < K from [22, 41.14].

(3) = (2) The proof is clear.

(1) = (4) Suppose that K be a co-coatomic submodule of A and A = K+T
for some submodule T' of A. By the assumption, we have a projective d-cover
w: P — A/K, for a projective module P. Since P is projective and A/K =
T/ (K NT), there exists a homomorphism h : P — T. Since ker (1) <5 P and
hkerp)=Im(h)NKNT =Im(h)NK,Imh)NK <5 Im(h). Andso T =
Im (h)+ (K NT) because p is an epimorphism. Thus I'm (h) is a §-supplement
of KNT in T. From here, A= K+T =K+ Im(h)+(KNT)=K+Im(h)
and I'm (h) N K <5 Im(h), i.e. Im(h) is a d—supplement of K in A and
Im (h) CT. Finally P is projective d-cover of I'm (h) because ker (h) < ker (u)
and ker (h) <5 P.

(4) = (5) The proof is clear.

(5) = (1) Let K be a co-coatomic submodule of A and T be a J-supplement
of K in A. Then T is a é-cover of T/ (K NT). Hence, each projective §-cover
of T is also projective é-cover of T/ (K NT). Finally, we say that A/K has
a projective d-cover because A/K = T/ (K NT) and so A is co-coatomically
d-semiperfect. O

Theorem 3.5. Each homomorphic image of a co-coatomically §-semiperfect
module is co-coatomically é-semiperfect.

Proof. Let A be a co-coatomically d-semiperfect module. We consider a
homomorphism ¢ : A — K. Suppose that o (A) /N be a coatomic fac-
tor module of o (A). There exists an homomorphism p : A — o (A) /N,
w(a) = o(a)+ N for every a € A. Since A is co-coatomically J-semiperfect,
AJo71(N) = o (a) /N that is 0 (A) /N has a projective d-cover. As a result
o (A) is co-coatomically d-semiperfect. O

Corollary 3.6. Each factor module of a co-coatomically d—semiperfect
module is co-coatomically ¢-semiperfect.

Corollary 3.7. If A is a projective co-coatomically §-semiperfect module,
then each factor module of A is also ®s-co-coatomically supplemented.
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Proof. The proof follows from Corollary 3.6 and Proposition 3.4. O

Theorem 3.8. Every d—cover of a co-coatomically §-semiperfect module
is co-coatomically d-semiperfect.

Proof. Suppose that K is a d-cover of a module A and ¢ : A — K be
an epimorphism with ker (¢) <5 A. For a co-coatomic submodule N of A,
the homomorphism ¢ : A/N — K/o(N), defined by ¢(a+ N) = o(a) +
o (N) is an epimorphism. From here, we say that K/o (N) is an epimor-
phic image of A/N and ker (¢) = (N +ker (o)) /N. Let X/N < A/N such
that [(N + ker (o)) /N] + X/N = A/N and (A/N)/(X/N) is singular. Then
X +ker(o) = Aand A/X = (A/N)/(X/N) is singular. Since ker (0) <5 A4,
A= X. It follows that ker (¢) <5 A/N. If we consider K/o (N) = ¢ (A/N) =
(A/N) /(N +ker (o)) /N, then we say that K/o (N) is coatomic By the as-
sumption, K/o (N) has a projective d-cover, i.e., u: P — K/o(N). As P is
projective, it can be found a homomorphism h : P — A/N such that the next
diagram is commutative

P
h
Ve bu
AN % K[o(N),
ie,poh=p. So A/N = h(P)+ker(¢). Since ker (¢) <5 A/N, there exists
a semisimple projective submodule T of ker (¢) where A/N = h(P)+T. We
take a homomorphism ¢ : P& T — A/N, defined by ¢ (p,t) = h(p) + N. It
is an epimorphism and ker (¢) = ker (h) @ 0. Since ker (h) < ker (1) <5 P,

then ker (h) ® 0 <5 P ® T. Finally, P ® T is projective d-cover of the module
A/N. O

Corollary 3.9. Let N <5 A and A/N be co-coatomically §-semiperfect.
The module A is co-coatomically §-semiperfect.

Corollary 3.10. If f: P — A be a projective -cover of a module A, then
the following conditions are equivalent:

(1) A is co-coatomically d-semiperfect.

(2) P is co-coatomically §-semiperfect.

(3) P is ®s-co-coatomically supplemented.

Proof. (1)=(2) It is clear that by Theorem 3.8.
(2)=(1) It is obvious that by Theorem 3.5.
(2)<(3) It is obvious that by Proposition 3.2. O

Theorem 3.11. Let A; be a projective module for every i € I where I is a
finite index set. Then every direct summand A; is co-coatomically §-semiperfect

if and only if A = @ A; is a co-coatomically d-semiperfect module.
icl
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Proof. (=) Since every A; is projective and co-coatomically d-semiperfect,
then every A; is @g-co-coatomically supplemented and so A is @s-co-coatomically
supplemented by Proposition 3.2, Proposition 2.16, respectively. Therefore, A
is a co-coatomically d-semiperfect module by Proposition 3.2.

(<) Suppose that A = @ A; be a co-coatomically d-semiperfect mod-
il
ule. With Corollary 3.6, A; is co-coatomically d-semiperfect because A; =

A/( ) Ai> for every i € I. O
iel\{j}

Let A be an R-module. Recall from [22] that an R-module N is called
(finitely) A-generated if there is an epimorphism h : AT — N for some (finite)
index set I.

Lemma 3.12. Let A be a projective module. If A is §-semiperfect, then
each finitely A-generated module is co-coatomically §-semiperfect. Moreover,
if A is finitely generated, the converse holds.

Proof. Assume that X be a finitely A-generated module. Since A is a J-
semiperfect projective module, A is co-coatomically d-semiperfect and so ®g-co-
coatomically supplemented. It follows from Proposition 2.16 that a finite direct
sum of A, i.e., for any finite set I, AU) is @s-co-coatomically supplemented.
Also by Proposition 3.2, AU is co-coatomically d-semiperfect. Therefore X is
co-coatomically §-semiperfect by Corollary 3.6. Since every finitely generated
module is coatomic, the converse is clear. O

Theorem 3.13. For an arbitrary ring R, the following conditions are equiv-
alent:

(1) R is d-semiperfect.

(2) Each finitely generated free R-module is co-coatomically §-semiperfect.

(3) Each finitely generated free R-module is d-semiperfect.

Proof. (1)=(2) It follows from Proposition 3.2 and Theorem 3.11 that R is
co-coatomically d-semiperfect.

(2)=-(3) The proof is clear.

(3)=-(1) By Proposition 3.2. O
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