• Title/Summary/Keyword: digital relaying

Search Result 86, Processing Time 0.017 seconds

Layer based Cooperative Relaying Algorithm for Scalable Video Transmission over Wireless Video Sensor Networks (무선 비디오 센서 네트워크에서 스케일러블 비디오 전송을 위한 계층 기반 협업 중계 알고리즘*)

  • Ha, Hojin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2022
  • Recently, in wireless video sensor networks(WVSN), various schemes for efficient video data transmission have been studied. In this paper, a layer based cooperative relaying(LCR) algorithm is proposed for minimizing scalable video transmission distortion from packet loss in WVSN. The proposed LCR algorithm consists of two modules. In the first step, a parameter based error propagation metric is proposed to predict the effect of each scalable layer on video quality degradation at low complexity. In the second step, a layer-based cooperative relay algorithm is proposed to minimize distortion due to packet loss using the proposed error propagation metric and channel information of the video sensor node and relay node. In the experiment, the proposed algorithm showed that the improvement of peak signal-to-noise ratio (PSNR) in various channel environments, compared to the previous algorithm(Energy based Cooperative Relaying, ECR) without considering the metric of error propagation.The proposed LCR algorithm minimizes video quality degradation from packet loss using both the channel information of relaying node and the amount of layer based error propagation in scalable video.

A High Speed Distance Relaying Algorithm Based on a Least Square Error Method (최소자승법을 이용한 고속 거리계전 알고리즘)

  • Kwon, Tae-Won;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.208-210
    • /
    • 1998
  • A high speed digital distance relaying algorithm based on a modified least square error method is proposed. To obtain stable phasor values very Quickly, first, a lowpass filter which has very short transient period and no overshoot is used. Secondly, the conventional least square error method is modified to the one having the data window of 3 samples by applying a FIR filter which removes the DC-offset component in current relaying signals.

  • PDF

A Study on the Digital Relaying Techniques by Real-Time Symmetrical Components of Power System (전력계통의 실시간 대칭성분을 이용한 거리계전 기법에 관한 연구)

  • 신명철;김철환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.695-702
    • /
    • 1987
  • Nowadays as the power systems have been more complicated and have grown to ultra high voltage, it requires a accurate and high speed relaying scheme to improve the reliability and stability of power systems for a harmonious power supplying. For this purpose voltage and current have to be measured at the location of the protective device and the short circuit impedance must be determined. This paper presents the application methods and some results of digital distance relaying scheme which is based upon the theouy of real-time symmetrical components. Usually the symmetrical component have been used to solve the transient systems as well as the steady state systems under unbalanced systems. But, real-time symmetrical component frequently have not been applied to on-line control region of the large power system. We have tried to apply this method to deal with the various type of faults on artificial transmission line. And experimental results demonstrate the validity of the proposed techniques. Therefore, this study is expected that it is contributed to improve the reliability of power supplying, searching for the fault location rapidly and exactly in power system.

  • PDF

Digital Ratio Differential Relaying for Main Protection of Large Generator (대형 발전기 주보호를 위한 디지털 비율차동 계전기법)

  • Park, Chul-Won;Ban, Yu-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • An AC generator is an important component in producing an electric power and so it requires highly reliable protection relays to minimize the possibility of demage occurring under fault conditions. It is a need for research of digital generator protection system(DGPS) for the next-generation ECMS and an efficient operation of protection control system in power station. However, most of protection and control system used in power plants have been still imported as turn-key and operated in domestic. This may cause the lack of the correct understanding on the protection systems and methods, and thus have difficulties in optimal operation. In this paper, presented ratio differential relaying(RDR) is main protective element in generator protection IED. The fault detection technique, operation zone and setting value of the RDR were studied and, compared with two of the fault detection algorithm. For evaluation performance of the RDR, the data obtained from ATPDraw5.7p4 modeling was used. The proposed methods are shown to be able to rapidly identify internal fault and did not operate a miss-operation for all the external fault.

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

A Recursive Distance Relaying Algorithm Immune to Fault Resistance (고장저항의 영향을 최소화한 순환형 거리계전 알고리즘)

  • Ahn, Yong-Jin;Kang, Sang-Hee;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.259-261
    • /
    • 2001
  • An accurate digital distance relaying algorithm which is immune to the combined reactance effect of the fault resistance and the load current is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the apparent impedance, this algorithm uses iteratively the angle of an impedance deviation vector improved step by step. The impedance correction algorithm for ground faults uses a current distribution factor to compensate mutual coupling effect.

  • PDF

Dynamic Response Characteristics of Distance Relay Including the Instrumental Devices (계기용 변성기를 포함한 거리계전기의 동특성 해석)

  • 김남호;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.227-236
    • /
    • 1992
  • In this paper, a simulation program of relaying system including the CT and CPD ( capacitive potential device ) is developed to study the effect of its operation under various system conditions. To deal with the dynamic characteristics of relaying system, state space technique is applied, and then the state equations of CT, CPD and mho distance relay are constructed. Also the dynamic response characteristics of overall relaying system is verified by digital simulation. Since the proposed model is capable of taking arbitrary input waveforms from EMTP in analyzing its dynamic responses, the effects of CT-saturation and CPD-subsidence transient characteristics on the operating points of who distance relay can be accurately prodicted. It gives more effective results, compared with the model without considering those characteristics by checking the exprimental data.

A New Distance Relaying Algorithm Immune to Mutual Coupling Effect and Reactance Effect for 765kV Untransposed Parallel Transmission Lines (상호결합효과와 리액턴스효과를 제거한 765kV 비연가 송전선로 보호용 거리계전 알고리즘)

  • Ahn Yong-Jin;Kang Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • An accurate digital distance relaying algorithm which is immune to mutual coupling effect and reactance effect of the fault resistance and the load current for the line faults in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for phase-to-ground fault and phase-to-phase short fault use a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kV untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.