• 제목/요약/키워드: digital applications

검색결과 2,127건 처리시간 0.032초

물리치료 바이오피드백의 정의 및 범위와 활용법: 체계적 문헌고찰 (Definition, Scope, and Applications of Physiotherapy Biofeedback: Systematic Reviews )

  • 오종선;이경진;김성길
    • 대한물리의학회지
    • /
    • 제18권4호
    • /
    • pp.109-119
    • /
    • 2023
  • PURPOSE: The definition and scope of biofeedback are broad and lack a clear framework. Therefore, efforts are needed to clearly understand the exact range and definition of biofeedback based on the research and development conducted to date. Thus, the purpose of this study was to arrive at the definition and scope of biofeedback through a literature review and analysis of its application methods. METHODS: This study is a systematic literature review conducted to understand the various types and effects of biofeedback. International databases such as Google Scholar and PubMed were used. Domestic databases utilized for keyword searches included the Research Information Sharing Service (RISS) and the National Digital Science Library (NDSL). Quality assessment of the selected studies in the selection process was done using the Cochrane risk of bias, and the research was analyzed according to the population, intervention, control, and outcomes (PICO) format. RESULTS: Studies conducted between 2019 and 2021 were selected, with 4 papers falling under physiological classifications and 7 under biomechanical classifications. The quality assessment results showed that random sequence generation, allocation concealment, performance bias, and reporting bias were unclear. Detection bias was moderate, and attrition bias and other biases were low. Out of the 11 papers, 9 dealt with physical function outcomes, 5 with daily life activities, and 3 with mental functions. CONCLUSION: Physiological biofeedback tended to influence psychological factors more than physical functions, while biomechanical biofeedback tended to have a positive impact on physical functions.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

언론사의 디지털 혁신과 구독자 되찾기: 온라인 뉴스의 유료이용 경험에 관한 연구 (Digital News Innovation and Online Readership: A Study of Subscribers Paying for Online News)

  • 정선호
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.1111-1117
    • /
    • 2023
  • 이 연구는 최근 국내 신문사가 다시금 온라인 뉴스에 대한 유료화를 시도하는 상황에 주목하고 뉴스 독자 중에서도 유료이용 경험자에 대한 이해를 높이고자 했다. 한국언론진흥재단의 2022년 언론수용자조사 데이터(N = 58,936)를 분석한 결과, 2020년 이후 온라인 뉴스에 대한 유료이용 경험 및 유료이용 의향에 꾸준한 증가세가 관찰되었다. 실제 유료이용 경험을 설명하는 요인은 인구사회학적 속성 중 성별, 연령, 학력으로 나타났으며, 그밖에 정치·사회 현안에 대한 관심도, 다양한 미디어를 통한 뉴스 이용(신문, 잡지, 포털, 메신저, SNS. 동영상사이트, 팟캐스트) 등이 영향을 미치는 것으로 나타났다. 각 신문사가 온라인 뉴스 유통에 활용하고 있는 디지털 플랫폼의 형태와 관련해서는 언론사 애플리케이션과 이메일 뉴스레터의 이용이 유료구독 경험을 설명하는 요인으로 나타났다. 이와 같은 연구결과는 앞으로 한국의 언론사가 차별화된 뉴스 콘텐츠를 자사의 플랫폼을 통해 유통할 수 있도록 준비하고, 뉴스 독자와의 신뢰 관계를 형성하기 위한 구체적인 계획을 수립하는 것이 중요할 것임을 시사한다.

Wine Quality Prediction by Using Backward Elimination Based on XGBoosting Algorithm

  • Umer Zukaib;Mir Hassan;Tariq Khan;Shoaib Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.31-42
    • /
    • 2024
  • Different industries mostly rely on quality certification for promoting their products or brands. Although getting quality certification, specifically by human experts is a tough job to do. But the field of machine learning play a vital role in every aspect of life, if we talk about quality certification, machine learning is having a lot of applications concerning, assigning and assessing quality certifications to different products on a macro level. Like other brands, wine is also having different brands. In order to ensure the quality of wine, machine learning plays an important role. In this research, we use two datasets that are publicly available on the "UC Irvine machine learning repository", for predicting the wine quality. Datasets that we have opted for our experimental research study were comprised of white wine and red wine datasets, there are 1599 records for red wine and 4898 records for white wine datasets. The research study was twofold. First, we have used a technique called backward elimination in order to find out the dependency of the dependent variable on the independent variable and predict the dependent variable, the technique is useful for predicting which independent variable has maximum probability for improving the wine quality. Second, we used a robust machine learning algorithm known as "XGBoost" for efficient prediction of wine quality. We evaluate our model on the basis of error measures, root mean square error, mean absolute error, R2 error and mean square error. We have compared the results generated by "XGBoost" with the other state-of-the-art machine learning techniques, experimental results have showed, "XGBoost" outperform as compared to other state of the art machine learning techniques.

MPEG-D USAC: 통합 음성 오디오 부호화 기술 (MPEG-D USAC: Unified Speech and Audio Coding Technology)

  • 이태진;강경옥;김환우
    • 한국음향학회지
    • /
    • 제28권7호
    • /
    • pp.589-598
    • /
    • 2009
  • 다양한 기능을 가지는 모바일 기기들이 하나로 융합되어 가는 방향으로 기술이 발전함에 따라, 음성 및 오디오 모두에 대해 우수한 음질을 제공하는 부호화 기술에 대한 요구사항이 증대되고 있다. 이와 같은 새로운 부호화 기술에 대한 요구사항에 따라, MPEG에서는 2007년 10월 82차 회의에서 CfP를 시작으로 USAC 표준화를 시작하였고, 2009년 4월 88차 회의에서 WD3까지 완성되었다. MPEG-D USAC 기술은 최신 음성 부호화기인 AMR-WB+와 최신 오디오 부호화기인 HE-AAC V2를 융합한 기술로 입력 신호의 특성에 따라 코어 대역 부호화로 AAC, ACELP, TCX 등 다양한 방법 중 하나를 선택하여 부호화를 수행하고, 고대역 부호화 기술로는 SBR, 스테레오 부호화 기술로는 MPEG-Surround를 이용한다. USAC 기술은 음성과 음악 신호 모두에 대해 모두 우수한 음질을 제공할 수 있으며, 모바일 기기로의 멀티미디어 콘텐츠 다운로드, 디지털 라디오, 모바일 TV 및 오디오 북등에서 응용이 가능하다.

Utilizing the n-back Task to Investigate Working Memory and Extending Gerontological Educational Tools for Applicability in School-aged Children

  • Chih-Chin Liang;Si-Jie Fu
    • Journal of Information Technology Applications and Management
    • /
    • 제31권1호
    • /
    • pp.177-188
    • /
    • 2024
  • In this research, a cohort of two children, aged 7-8 years, was selected to participate in a specialized three-week training program aimed at enhancing their working memory. The program consisted of three sessions, each lasting approximately 30 minutes. The primary goal was to investigate the impact and developmental trajectory of working memory in school-aged children. Working memory plays a significant role in young children's learning and daily activities. To address the needs of this demographic, products should offer both educational and enjoyable activities that engage working memory. Digital educational tools, known for their flexibility, are suitable for both older individuals and young children. By updating software or modifying content, these tools can be effectively repurposed for young learners without extensive hardware changes, making them both cost-effective and practical. For example, memory training games initially designed for older adults can be adapted for young children by altering images, music, or storylines. Furthermore, incorporating elements familiar to children, like animals, toys, or fairy tales, can increase their engagement in these activities. Historically, working memory capabilities have been assessed predominantly through traditional intelligence tests. However, recent research questions the adequacy of these behavioral measures in accurately detecting changes in working memory. To bridge this gap, the current study utilized electroencephalography (EEG) as a more sophisticated and precise tool for monitoring potential changes in working memory after the training. The research findings were revealing. Participants showed marked improvement in their performance on n-back tasks, a standard measure for evaluating working memory. This improvement post-training strongly supports the effectiveness of the training program. The results indicate that such targeted and structured training programs can significantly enhance the working memory abilities of children in this age group, providing promising implications for educational strategies and cognitive development interventions.

Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices

  • Hyun Namgung;Abdi Mirgissa Kaba;Hyeonkyu Oh;Hyunjin Jeon;Jeonghwan Yoon;Haseul Lee;Dohyun Kim
    • BioChip Journal
    • /
    • 제16권
    • /
    • pp.82-98
    • /
    • 2020
  • We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surface-treatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays.

Development of an Enhanced Risk Management System for Construction Defect Control in Industrial Plants

  • Kihun Song
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.1313-1313
    • /
    • 2024
  • This paper proposes the development of an advanced Risk Management System (RMS) using Risk-Based Methodologies (RBM) specifically tailored for addressing construction defects in industrial plants. Urbanization and industrialization demand robust frameworks to handle the complexities and safety concerns in construction projects. Traditional risk management often overlooks critical aspects such as persistent construction defects. This paper discusses the development of an innovative Risk Management System (RMS) that integrates Risk-Based Methodologies (RBM) specifically for construction defect mitigation in industrial settings. The study centers around the implementation of Risk-Based Inspection (RBI) techniques, tailored to enhance traditional risk management systems. This includes developing a specialized risk assessment tool alongside an online management platform, designed to provide continuous monitoring and comprehensive management of construction risks. The proposed system-RBE-i (Risk-Based Execution for Installation)-focuses on identifying, evaluating, and mitigating risks effectively, utilizing a systematic approach that integrates seamlessly into existing construction workflows. The RBE-i system's core lies in its ability to conduct thorough risk analyses and real-time data provision. It uses digital technologies to improve communication, operational efficiency, and decision-making processes across construction projects. By applying these methodologies, the system enhances safety and ensures more efficient project execution by preemptively identifying potential risks and addressing them promptly. Field applications of RBE-i have demonstrated its effectiveness in significantly reducing construction defects, thus validating its potential as a transformative tool in construction risk management. The system sets new industry standards by shifting from reactive to proactive risk management practices, ultimately leading to safer, more reliable, and cost-effective construction operations. In conclusion, the RMS developed through this study not only addresses the pressing needs of construction risk management but also proposes a paradigm shift towards more proactive, structured, and technology-driven practices. The successful integration of the RBE-i system across various pilot projects illustrates its significant potential to improve overall project outcomes, making it an invaluable addition to the field of construction management.

Digital Imaging Fiber-Optic Trans-illumination을 이용한 초기 법랑질 우식병소의 조기 진단 (EARLY DETECTION OF INITIAL DENTAL CARIES USING A $DIFOTI^{TM}$)

  • 염혜웅;유승훈;김종수
    • 대한소아치과학회지
    • /
    • 제31권4호
    • /
    • pp.587-597
    • /
    • 2004
  • 치아 우식증의 발생과 관련된 분야에 대한 연구는 지난 20년간 활발히 진행되어 괄목할만한 발전을 이루었다. 그러나 치아 우식증의 원천적인 예방을 이루기 위해서는 보다 새로운 실험 장비와 기구를 이용한 다각적인 연구가 요구되며, 이러한 흐름에 부응하여 미국의 인디아나 치과대학을 중심으로 초기 법랑질 우식증에 관한 재조명이 집중적으로 이루어지고 있다. 또한 세계적으로 치과계의 지속적인 대민 교육과 홍보 및 불소화사업 등의 우식 예방에 대한 노력과 구강 보건에 대한 대중의 인식 향상을 통해 치아 우식증이 감소하는 추세에 있으며, 이로 인해 치아 우식증이 기존의 교합면보다 인접면에서 더 많이 발견되는 추세로 변화되고 있다. 치아 우식증의 조기 진단을 목적으로 새로운 진단 장비들이 속속 개발되고 있으며 이미 성능의 우수성이 실험실 연구를 통해 입증된 바 있다. 본 연구의 목적은 초기 인접면 우식증의 진단에 있어 새로 개발된 $DIFOTI^{TM}$ 시스템의 효능을 기존의 방법인 시진 및 교익방사선사진과 비교 평가하고, 임상 적용시의 문제점을 파악하여 차후 $DIFOTI^{TM}$ 시스템 개발에 필요한 개선안을 제시함과 아울러 치아 우식증의 예방 및 불소를 이용한 초기 우식증 재광화 방법에 대한 기초 연구 자료를 마련하고자하였다. 학동기 연령에 있는 유치 탈락 시기에 근접한 것으로 기대되는 23명의 아동을 대상으로 구강 검진 2회, 구치부 교익 방사선 필름 판독 2회 그리고 전치부 및 구치부 $DIFOTI^{TM}$ 이미지 판독 2회를 실시하고 각 방법에 대한 신뢰도 평가를 시행한 결과 다음과 같은 결론을 얻었다. 1. 구강 검진시 검사자간 신뢰도는 교합면에서 평균 0.8470으로 가장 높았으며, 근심면 평균 0.6430, 원심면 평균 0.5727, 설면 평균 0.2807 그리고 협면 평균 0.2339순으로 나타났다. 구치부에 국한시킨 경우 교합면에서는 평균 0.8577이었으며, 원심면 평균 0.8211, 설면 평균 0.7728, 협면 평균 0.7152, 근심면 평균 0.6782 순으로 나타났다. 2. 구치부 교익 방사선 사진 판독 결과에 대한 검사자간 신뢰도는 교합면 평균 0.8346, 근심면 평균 0.8675, 원심면 평균 0.8482 순으로 나타났다. 3. $DIFOTI^{TM}$ 이미지 판독 결과에 대한 검사자간 신뢰도는 교합면 평균 0.8437, 협면 평균 8379, 근심면 평균 0.8223, 설면 평균 0.7766, 원심면 평균 0.6781 순으로 나타났다. 4. 치아 우식증 진단율을 비교한 결과 교합면, 협면, 설면에서는 $DIFOTI^{TM}$ 이미지 판독이 가장 우수한 것으로 나타났으며(p<0.05), 근심면과 원심면에서는 방사선 판독이 가장 우수한 것으로 나타났다(p<0.05).

  • PDF

Product-Service System(PSS) 성공과 실패요인에 관한 탐색적 사례 연구 (Exploratory Case Study for Key Successful Factors of Producy Service System)

  • 박아름;진동수;이경전
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.255-277
    • /
    • 2011
  • PSS(Product Service System) 시스템은 제품과 서비스가 하나로 통합되어 고객에게 차별화된 가치를 제공하고, 기업이 경쟁력을 가지고 지속적인 성장을 할 수 있게 지원하는 시스템이다. 본 논문에서는 PSS 시스템으로 성공한 Amazon의 Kindle과 Apple의 iPod, 실패한 Microsoft의 Zune과 Sony의 e-book reader를 채택하여 중다 사례연구 방법론을 통해 성공요인과 실패요인을 도출하고자 한다. 이를 위하여, 사례 분석을 통해 가설을 도출하고, 연관 문헌연구와의 비교 및 분석을 통하여 PSS 시스템에서 상업적으로 성공하기 위한 전략적 시사점을 제시하였다.