• Title/Summary/Keyword: diffusion mechanism

Search Result 718, Processing Time 0.027 seconds

Circumferential Creep Behaviors of Zr-Nb-O and Zr-Nb-Sn-Fe Alloy Cladding Tubes Manufactured by Pilgering (Pilgering 법에 의해 제조된 Zr-Nb-O 및 Zr-Nb-Sn-Fe 합금 피복관의 원주방향 Creep 거동)

  • Lee, S.Y.;Ko, S.;Choi, Y.C.;Kim, K.T.;Choi, J.H.;Hong, S.I.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.364-372
    • /
    • 2008
  • In this study, the circumferential creep behaviors ofpilgered advanced Zirconium alloy tubes such as Zr-Nb-O and Zr-Nb-Sn-Fe were investigated in the temperature range of $400\sim500^{\circ}C$ and in the stress range of 80$\sim$150MPa. The test results indicate that the stress exponent for the steady-state creep rate of the Zr-Nb-Sn-Fe alloy decreases with the increase of stress(from 6$\sim$7 to 4), while that of the Zr-Nb-O alloy is nearly independent of stress(5$\sim$6). The activation energy of creep deformation is found to be nearly the same as the activation energy for Zr self diffusion. This indicates that the creep deformation may be controlled by dislocation climb mechanism in Zr-Nb-O. On the other hand, the transition of stress exponent(from 6-7 to 4) in Zr-Nb Sn-Fe strongly suggests the transition of the rate controlling mechanism at high stresses. The lower stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained by the dynamic deformation aging effect caused by interaction of dislocations with Sn substitutional atoms.

Controlled Growth of Large-area Mono-, Bi-, and Few-layer Graphene by Chemical Vapor Deposition on Copper Substrate

  • Kim, Yooseok;Lee, Su-il;Jung, Dae Sung;Cha, Myoung-Jun;Kim, Ji Sun;Park, Seung-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.380.2-380.2
    • /
    • 2014
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF

Manometer Scale Mark Formation using Thermal Reaction For Storage Application (열 반응을 이용한 나노사이즈 마크형성)

  • Jung, Moon-Il;Kim, Joo-Ho;Hwang, In-Oh;Kim, Hyun-Ki;Bae, Jae-Cheol;Park, In-Sik;Kuwahara, Masashi;Tominaga, Junji
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.127-131
    • /
    • 2005
  • We report a nanometer scale mark formation using a $PtO_x$ thin film or a TbFeCo rare-earth transition metal film and the mechanism. The multi-layer samples($ZnS-SiO_2/PtOx/ZNS-SiO_2,\;ZnS-SiO_2/TbFeCo/ZnS-SiO_2$) were prepared with a magnetron sputtering method on a polycarbonate or a glass substrate. By laser irradiation of approximately a few nanoseconds, nanometer scale marks were fabricated. During the fabrication process, the thin films were thermally reacted or inter-diffused during the laser irradiation. 75 nm bubble marks in the PtOx multi-layer sample by an approximately 4-ns laser irradiation. Inside the bubble mark, Pt particles with a few nanometer sizes are distributed. The $50{\sim}100$ nm bubble marks in the TbFeCo multi-layer sample by a few nanosecond laser irradiations. We will report the detail structure of the samples, the bubble mark formation process and the mechanism.

  • PDF

Reduction Leaching of Manganese Dioxide Ore Using Black Locust as Reductant in Sulfuric Acid Solution

  • Xue, Jianrong;Zhong, Hong;Wang, Shuai;Li, Changxin;Li, Jinzhong;Wu, Fangfang
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.509-516
    • /
    • 2015
  • We investigated the reduction leaching process of manganese dioxide ore using black locust as reductant in sulfuric acid solution. The effect of parameters on the leaching efficiency of manganese was the primary focus. Experimental results indicate that manganese leaching efficiency of 97.57% was achieved under the optimal conditions: weight ratio of black locust to manganese dioxide ore (WT) of 4:10, ore particle size of $63{\mu}m$, $1.7mol{\cdot}L^{-1}\;H_2SO_4$, liquid to solid ratio (L/S) of 5:1, leaching time of 8 h, leaching temperature of 368 K and agitation rate of $400r{\cdot}min^{-1}$. The leaching rate of manganese, based on the shrinking core model, was found to be controlled by inner diffusion through the ash/inert layer composed of associated minerals. The activation energy of reductive leaching is $17.81kJ{\cdot}mol^{-1}$. To conclude the reaction mechanism, XRD analysis of leached ore residue indicates manganese compounds disappear; FTIR characterization of leached residue of black locust sawdust shows hemicellulose and cellulose disappear after the leaching process.

Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains - Bee Venom an Effective Potential for Bacteria-

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

Reaction Scheme on the Direct Synthesis of Methylchlorosilanes (Methylchlorosilanes의 직접 생산 반응에서 반응기구)

  • Kim, Jong Pal;Lee, Kwang Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.291-296
    • /
    • 2018
  • Direct synthesis of methylchlorosilanes was developed by Rochow with addition of copper on the silicon surface as a catalyst and many research were followed. Most of research were focused on the increase of reaction activity through addition of promoters and concentrated on the increase of selectivity of DMDC. However, there are very few studies about the reaction mechanism. Although formation of DMDC was explained in literature, formation of other silanes were not mentioned at all. This reseach focused on the explanation about formation of all silanes obtained during direct reaction and TPD. Reaction paths were proposed by means of dissociative adsorption of methyl chloride and spillover of surface Cl and H. Surface silicon sites were considered as $=SlCl_2$ and $=Sl(CH_3)Cl$. The synthesis of all methylchlorosilanes were explained by the adsorption of methyl group on the silicon sites and by the surface diffusion of nearby Cl and H. The proposed reaction mechanism explains the formation of all silanes during the reaction and also during the TPD process.

The Design and Implementation of the Multimedia End-to-End Server I/O System based on Linux (멀티미디어 End-to-End 서버용 리눅스 기반 I/O 시스템 설계 및 구현)

  • Nam, Sang-Jun;Lee, Byeong-Rae;Park, Nam-Seop;Lee, Yun-Jeong;Kim, Tae-Yun
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.311-318
    • /
    • 2001
  • In recent years, users\` demands for multimedia service are increasing because of a diffusion of internet. Server systems, however, offer inefficient multimedia data service to users. Multimedia applications often transfer the same data between shared devices at very high rates, and therefore require an efficient I/O subsystem. Data copying and context switching have long been identified as sources of I/O inefficiency. Therefore we propose the new Multimedia Stream System Call (MSSC) mechanism, which is inserted into a Linux kernel: The MSSC mechanism operates in kernel domain with RTP (Real-time Transport Protocol). We present measurements indicating that use of our techniques resulted in a 12.5%∼14% gain in throughput as compared with a conventional Linux system.

  • PDF

Characteristics of Microwave-Assisted Drying of Plant Cells of Taxus chinensis for Moisture Removal (수분 제거를 위한 식물세포 Taxus chinensis의 마이크로웨이브를 이용한 건조 특성)

  • Nam, Hyeon-Woo;Kim, Jin-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, the characteristics and mechanism of microwave-assisted drying were investigated to improve the efficiency of the storage and extraction of biomass through the removal of moisture from plant cell Taxus chinensis. The efficiency of microwave-assisted drying increased with increasing microwave power. When the experimental data were fitted to typical drying kinetic models, the page and modified Page models were the most appropriate. The microwave-assisted drying was determined to be a spontaneous endothermic process, and randomness increased during the drying process. The effective diffusion coefficient (3.445 × 10-9~7.163 × 10-7 ㎡/s) and mass transfer coefficient (3.1529 × 10-5~1.2895 × 10-2 m/s) increased with increasing microwave power. The small Biot number (0.3890~0.7198) indicated that the mass transfer process was externally controlled.

Dynamic Rectangle Zone-based Collaboration Mechanism for Continuous Object Tracking in Wireless Sensor Networks (센서 네트워크에서 연속적인 개체 추적을 위한 동적 직사각형 영역 기반 협동 메커니즘)

  • Park, Bo-Mi;Lee, Eui-Sin;Kim, Tae-Hee;Park, Ho-Sung;Lee, Jeong-Cheol;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.591-595
    • /
    • 2009
  • Most existing routing protocols for object detection and tracking in wireless sensor networks concentrate on finding ways to detect and track one and more individual objects, e.g. people, animals, and vehicles, but they do not be interested in detecting and tracking of continuous objects, e.g., poison gas and biochemical. Such continuous objects have quite different properties from the individual objects since the continuous objects are continuously distributed across a region and usually occupy a large area, Thus, the continuous objects could be detected by a number of sensor nodes so that sensing data are redundant and highly correlated. Therefore, an efficient data collection and report scheme for collecting and locally aggregating sensing data is needed, In this paper, we propose the Continuous Object Tracking Mechanism based on Dynamic Rectangle Zone for detecting, tracking, and monitoring the continuous objects taking into account their properties.

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.