DOI QR코드

DOI QR Code

Characteristics of Microwave-Assisted Drying of Plant Cells of Taxus chinensis for Moisture Removal

수분 제거를 위한 식물세포 Taxus chinensis의 마이크로웨이브를 이용한 건조 특성

  • Nam, Hyeon-Woo (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 남현우 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2020.02.26
  • Accepted : 2020.03.23
  • Published : 2020.04.10

Abstract

In this study, the characteristics and mechanism of microwave-assisted drying were investigated to improve the efficiency of the storage and extraction of biomass through the removal of moisture from plant cell Taxus chinensis. The efficiency of microwave-assisted drying increased with increasing microwave power. When the experimental data were fitted to typical drying kinetic models, the page and modified Page models were the most appropriate. The microwave-assisted drying was determined to be a spontaneous endothermic process, and randomness increased during the drying process. The effective diffusion coefficient (3.445 × 10-9~7.163 × 10-7 ㎡/s) and mass transfer coefficient (3.1529 × 10-5~1.2895 × 10-2 m/s) increased with increasing microwave power. The small Biot number (0.3890~0.7198) indicated that the mass transfer process was externally controlled.

본 연구에서는 식물세포 Taxus chinensis로부터 수분 제거를 통한 바이오매스 보관 및 추출 효율 향상을 위하여, 마이크로웨이브를 이용한 건조의 특성 및 메커니즘을 조사하였다. 마이크로웨이브 파워가 100, 200, 300 W로 증가함에 따라 수분의 제거 효율은 증가하였다. 실험 데이터를 대표적 동역학적 건조 모델에 적용할 때, Page 모델과 modified Page 모델이 가장 적합한 것으로 결정되었다. 열역학적 파라미터는 마이크로웨이브를 이용한 건조의 자발적 및 흡열특성을 나타내었으며, 건조 과정에서 무질서도는 증가함을 알 수 있었다. 마이크로웨이브 파워(100~300 W)가 증가함에 따라 수분의 유효확산계수(3.445 × 10-9~7.163 × 10-7 ㎡/s) 및 대류물질전달계수(3.1529 × 10-5~1.2895 × 10-2 m/s)가 증가하였다. 작은 비오트 수(0.3890~0.7198)를 고려할 때, Taxus chinensis의 건조 진행은 외부 확산에 의해 조절됨을 알 수 있었다.

Keywords

References

  1. T. W. Kim and J. H. Kim, Kinetics and thermodynamics of paclitaxel extraction from plant cell culture, Korean J. Chem. Eng., 33, 3175-3183 (2016). https://doi.org/10.1007/s11814-016-0187-2
  2. Y. S. Kim and J. H. Kim, Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto sylopute, J. Chem. Thermodyn., 130, 104-113 (2019). https://doi.org/10.1016/j.jct.2018.10.005
  3. S. H. Lee and J. H. Kim, Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis, Process Biochem., 76, 187-193 (2019). https://doi.org/10.1016/j.procbio.2018.11.010
  4. H. J. Kang and J. H. Kim, Adsorption kinetics, mechanism isotherm and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto sylopute, Biotechnol. Bioproc. Eng., 24, 513-521 (2019). https://doi.org/10.1007/s12257-019-0001-1
  5. G. Y. Park, G. J. Kim, and J. H. Kim, Effect of tar compounds on the purification efficiency of paclitaxel from Taxus chinensis, J. Ind. Eng. Chem., 21, 151-154 (2015). https://doi.org/10.1016/j.jiec.2014.03.042
  6. J. H. Kim, C. B. Lim, I. S. Kang, S. S. Hong, and H. S. Lee, The use of a decanter for harvesting biomass from plant cell cultures, Korean J. Biotechnol. Bioeng., 16, 337-341 (2000).
  7. J. Y. Lee and J. H. Kim, Effect of water content of organic solvent on microwave-assisted extraction efficiency of paclitaxel from plant cell culture, Korean J. Chem. Eng., 28, 1561-1565 (2011). https://doi.org/10.1007/s11814-011-0012-x
  8. J. E. Hyun and J. H. Kim, Microwave-assisted extraction of paclitaxel from plant cell cultures, Korean J. Biotechnol. Bioeng., 23, 281-284 (2008).
  9. J. H. Kim, H. B. Park, U. S. Gi, I. S. Kang, H. K. Choi, and S. S. Hong, Removal of residual solvents in paclitaxel by supercritical carbon dioxide, Korean J. Biotechnol. Bioeng., 16, 233-236 (2001).
  10. U. S. Gi, B. Min, J. H. Lee, and J. H. Kim, Preparation and characterization of paclitaxel from plant cell culture, Korean J. Chem. Eng., 21, 816-820 (2004). https://doi.org/10.1007/BF02705526
  11. J. Y. Lee and J. H. Kim, Microwave-assisted drying of paclitaxel for removal of residual solvents, Process Biochem., 48, 545-550 (2013). https://doi.org/10.1016/j.procbio.2013.01.015
  12. Y. Li, Y. Lei, L. B. Zhang, J. H. Peng, and C. L. Li, Microwave drying characteristics and kinetics of ilmenite, Trans. Nonferrous Met. Soc. China, 21, 202-207 (2011). https://doi.org/10.1016/S1003-6326(11)60700-0
  13. H. S. Kim, Y. B. Chae, S. B. Jung, and Y. N. Jang, Drying of by-product gypsum by microwave heating, J. Miner. Soc. Korea, 21, 193-200 (2008).
  14. A. S. Kassem, A. Z. Shokr, A. R. EI-Mahdy, A. M. Aboukarima, and E. Y. Hamed, Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying, J. Saudi Soc. Agr. Sci., 10, 33-40 (2011). https://doi.org/10.1016/j.jssas.2010.05.001
  15. Y. C. Cheung and J. Y. Wu, Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus, Biochem. Eng. J., 79, 214-220 (2013). https://doi.org/10.1016/j.bej.2013.08.009
  16. Y. C. Cheung, K. C. Siu, and J. Y. Wu, Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi, Food Bioprocess Technol., 6, 2659-2665 (2013). https://doi.org/10.1007/s11947-012-0929-z
  17. D. K. Saxena, S. K. Sharma, and S. S. Sambi, Kinetics and thermodynamics of gossypol extraction from defatted cottonseed meal by ethanol, Pol. J. Chem. Technol., 14, 29-34 (2012).
  18. H. S. Kim and J. H. Kim, Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride, Process Biochem., 56, 163-170 (2017). https://doi.org/10.1016/j.procbio.2017.02.007
  19. W. S. Jang and J. H. Kim, Characteristics and mechanism of microwave-assisted drying of amorphous paclitaxel for removal of residual solvent, Biotechnol. Bioproc. Eng., 24, 529-535 (2019). https://doi.org/10.1007/s12257-019-0076-8
  20. G. E. Page, Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-layers, MS Dissertation, Purdue University, West Lafayette, Indiana, USA (1949).
  21. G. M. White, T. C. Loewer, and I. J. Ross, Seed coat damage in thin layer drying of soybeans as affected by drying conditions, Trans. Am. Soc. Agric. Eng., 23, 224-227 (1978). https://doi.org/10.13031/2013.34559
  22. S. M. Henderson and S. Pabis, Grain drying theory I: Temperature effect on drying coefficient, J. Agr. Eng. Res., 6, 169-174 (1961).
  23. D. C. Chinweuba, R. N. Nwakuba, and V. C. Okafor, Thin layer drying modelling for some selected nigerian produce: A review, Am. J. Food. Sci. Nutr. Res., 3, 1-15 (2016).
  24. P. Saha and S. Chowdhury, Insight into Adsorption Thermodynamics, Mizutani Tadashi (ed.), ISBN: 978-953-307-544-0, InTech, Available from: https://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
  25. L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte, and H. Fauduet, Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L, Sep. Purif. Technol., 76, 126-131 (2010). https://doi.org/10.1016/j.seppur.2010.09.030
  26. A. J. Sahin, I. Dincer, B. S. Yilbas, and M. M. Hussain, Determination of drying times for regular multi-dimensional objects, Int. J. Heat Mass Transf., 45, 1757-1766 (2002). https://doi.org/10.1016/S0017-9310(01)00273-3
  27. H. Hata, S. Saeki, T. Kimura, Y. Sugahara, and K. Kuroda, Adsorption of taxol into ordered mesoporous silica with various pore diameters, Chem. Mater., 11, 1110-1119 (1999). https://doi.org/10.1021/cm981061n
  28. H. Darvishi, A. R. Asl, A. Asghari, G. Najafi, and H. A. Gazori, Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices, J. Food Process Technol., 4, 1-6 (2013).
  29. J. Crank, The Mathematics of Diffusion, 2nd ed., 89-103, Clarendon Press, Oxford, UK (1975).
  30. I. Dincer and M. M. Hussain, Development of a new Bi-Di correlation for solids drying, Int. J. Heat Mass Transf., 45, 3065-3069 (2002). https://doi.org/10.1016/S0017-9310(02)00031-5
  31. B. E. Prasad and K. K. Pandey, Microwave drying of bamboo, Eur. J. Wood Prod., 70, 353-355 (2012). https://doi.org/10.1007/s00107-010-0496-9
  32. I. A. Ozken, B. Akbudak, and N. Akbudak, Microwave drying characteristics of spinach, J. Food Eng., 78, 577-583 (2007). https://doi.org/10.1016/j.jfoodeng.2005.10.026
  33. H. Lee and C. S. Han, Drying and Quality Characteristics of Agricultural and Fishery Products Using Far Infrared Rays, MS Dissertation, Chungbuk National University, Cheongju, Korea (2009).
  34. R. P. F. Guine, M. J. Barroca, and V. Silva, Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices, Int. J. Food Prop., 16, 251-262 (2013). https://doi.org/10.1080/10942912.2011.551864
  35. G. P. Sharma and S. Prasad, Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying, J. Food Eng., 65, 609-617 (2004). https://doi.org/10.1016/j.jfoodeng.2004.02.027
  36. E. Mirzaee, S. Rafiee, A. Keyhani, and Z. Emam-Djomeh, Determining of moisture diffusivity and activation energy in drying of apricots, Res. Agr. Eng., 55, 114-120 (2009). https://doi.org/10.17221/8/2009-RAE
  37. A. Sander, J. P. Kardum, and D. Skansi, Transport properties in drying solids, Chem. Biochem. Eng. Q., 15, 131-137 (2001).