References
- K. Lee, A. Mazare, and P. Schmuk, One-dimensional titanium dioxide nanomaterials: Nanotubes, Chem. Rev., 114, 9385-9454 (2014). https://doi.org/10.1021/cr500061m
- I. Chang, D. Jung, and J. Gook, Corrosion characteristics of the sulfuric acid anodized film formed on Al6070 alloy in nitric acid vapor environment, J. Kor. Inst. Surf. Eng., 45, 198-205 (2012). https://doi.org/10.5695/JKISE.2012.45.5.198
- A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel, and K. U. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50magnesium alloy by electrochemical impedance spectroscopy, Surf. Coat., 202, 3513-3518 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.033
- L. Yisen, C. Yi, L. Zhiyuan, H. Xing, and L. Yi, Structural coloring of aluminum, Electrochem. Commun., 13, 1336-1339 (2011). https://doi.org/10.1016/j.elecom.2011.08.008
- H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
- H. Masuda, F. Hasegawa, and S. Ono, Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127 (1997). https://doi.org/10.1149/1.1837634
- T. Kikuchi, D. Nakajima, O. Nishinaga, S. Natsui, and R. O. Suzuki, Porous aluminum oxide formed by anodizing in various electrolyte species, Curr. Nanosci., 11, 560-571 (2015). https://doi.org/10.2174/1573413711999150608144742
- B. Melody, T. Kinard, and P. Lessnerm The non-thickness-limited growth of anodic oxide films on valve metals, Electrochem. Solid-State Lett., 1,, 126 (1998). https://doi.org/10.1149/1.1390659
- T. N. Nguyen, D. Kim, D. Jeong, M. Kim, and J. Kim, Formation behavior of nanoporous anodic aluminum oxide films in hot glycerol/phosphate electrolyte, Electrochim. Acta, 83, 288-293 (2012). https://doi.org/10.1016/j.electacta.2012.08.019
- K. Lee, Y. Yang, M. Yang, and P. Schmuki, Formation of highly ordered nanochannel Nb oxide by self-organizing anodization, Chem. Eur. J., 18, 9521-9524 (2012). https://doi.org/10.1002/chem.201201426
- H. Habazaki, M. Teraoka, Y. Aoki, P. Skeldon, and G. E. Thompson, Formation of porous anodic titanium oxide films in hot phosphate/glycerol electrolyte, Electrochim. Acta, 55, 3939-3943 (2010). https://doi.org/10.1016/j.electacta.2010.02.036
- S. Yang, Y. Aoki, P. Skeldon, and G. E. Thompson, Growth of porous anodic alumina films in hot phosphate-glycerol electrolyte, J. Solid State Electrochem., 15 689-696 (2011). https://doi.org/10.1007/s10008-010-1141-6
-
K. Lee, D. Kim, and P. Schmuki, Highly self-ordered nanochannel
$TiO_2$ structures by anodization in a hot glycerol electrolyte, Chem. Commun., 47, 5789-5791 (2011). https://doi.org/10.1039/c1cc11160d - Q. Lu, G. Alcal, P. Skeldon, G. E. Thompson, M. J. Graham, D. Masheder, K. Shimizu, and H. Habazaki, Porous tantala and alumina films from non-thickness limited anodising in phosphate/glycerol electrolyte, Electrochim. Acta, 48, 37-42 (2002). https://doi.org/10.1016/S0013-4686(02)00545-5
-
K. Lee and P. Schmuk, Highly ordered nanoporous
$Ta_2O_5$ formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte, Electrochem. Commun., 13, 542-545 (2011). https://doi.org/10.1016/j.elecom.2011.03.005 - J. Lee, S. Jung, V. S. Kumbhar, S. Uhm, H. Kim, and K. Lee, Formation of aluminum oxide nanostructures via anodization of Al 3104 alloy and their wettability behavior for self-cleaning application, Catal. Today., https://doi.org/10.1016/j.cattod.2019.04.062
- S. Moon, Anodic oxidation treatment methods of metals, J. Kor. Inst. Surf. Eng., 51, 1-10 (2018). https://doi.org/10.5695/JKISE.2018.51.1.1
- S. Theohari and C. Kontogeorgou, Effect of temperature on the anodizing process of aluminum alloy AA 5052, Appl. Surf. Sci., 284, 611-618 (2013). https://doi.org/10.1016/j.apsusc.2013.07.141
-
H. Lee, V. S. Kumbhar, J. Lee, H. Oh, and K. Lee, Boosted photocatalytic hydrogen evolution by tuning inner pore size and co-catalyst thickness of the anodic
$TiO_2$ nanotubes, Catal. Today., https://doi.org/10.1016/j.cattod.2019.04.062.
Cited by
- 피로인산 전해질에서 양극산화를 통한 알루미늄 3104 합금 나노섬유 산화물 형성 vol.24, pp.1, 2021, https://doi.org/10.5229/jkes.2021.24.1.7