• Title/Summary/Keyword: diffusion limitation

Search Result 96, Processing Time 0.026 seconds

Bioaccumulation and Baseline Toxicity of Hydrophobic Chemicals: Molecular Size Cutoff, Kinetic Limitations, and Chemical Activity Cut-off (소수성화학물질의 생물축적과 기저독성: 분자크기, 반응속도, 화학적 활성도에 따른 제약)

  • Kwon, Jung-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • It has been observed that the linear relationship between the logarithm of bioconcentration factor (log BCF) of highly hydrophobic chemicals and their log $K_{ow}$ breaks when log $K_{ow}$ becomes greater than 6.0. Consequently, super hydrophobic chemicals were not thought to cause baseline toxicity as a single compound. Researchers often call this phenomenon as "hydrophobicity cutoff" meaning that bioconcentration or corresponding baseline toxicity has a certain cutoff at high log $K_{ow}$ value of hydrophobic organic pollutants. The underlying assumption is that the increased molecular size with increasing hydrophobicity prohibits highly hydrophobic compounds from crossing biological membranes. However, there are debates among scientists about mechanisms and at which log $K_{ow}$ this phenomenon occurs. This paper reviews three hypotheses to explain observed "cutoff": steric effects, kinetic or physiological limitations, and chemical activity cutoff. Although the critical molecular size that makes biological membranes not permeable to hydrophobic organic chemicals is uncertain, size effects in combination with kinetic limitation would explain observed non-linearity between log BCF and log $K_{ow}$. Chemical activity of hydrophobic chemicals generally decreases with increasing melting point at their aqueous solubility. Thus, there may be a chemical activity cutoff of baseline toxicity if there is a critical chemical activity over which baseline effects can be observed.

Evaluation Modeling Heat Generation Behavior for Lithium-ion Battery Using FEMLAB (FEMLAB을 이용한 리튬이온전지의 발열특성 평가모델링)

  • Lee, Dae-Hyun;Yoon, Do-Young
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.320-324
    • /
    • 2012
  • In the present study, the discharge characteristics of a lithium-ion battery was evaluated to calculate the rate of heat generation under various discharge rates by mathematical modeling. The modeling and simulation of a pseudo-two dimensional ionic transport system for governing Butler-Volmer equation were carried out by using FEMLAB as a PDE (partial differential equation) solver, where the discharge rate was changed from 5 $A/m^2$ to 25 $A/m^2$. The computational results showed that the concentration of consumed solid-phase lithium at the surface of electrode was increased with increasing discharge rates. While the resulting diffusion limitation occurred shortly, it increased the rate of heat generation even more rapidly for the internal voltage to approach the cutoff voltage of the lithium-ion battery.

Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water

  • Jang, Hyun Min;Yoo, Seunghyun;Park, Sunkyu;Kan, Eunsung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.608-617
    • /
    • 2019
  • The adsorption of sulfamethoxazole (SMX) onto a NaOH-activated pine wood-derived biochar was investigated via batch experiments and models. Surprisingly, the maximum adsorption capacity of activated biochar for SMX (397.29 mg/g) was superior than those of pristine biochars from various feedstock, but comparable to those of commercially available activated carbons. Elovich kinetic and Freundlich isotherm models revealed the best fitted ones for the adsorption of SMX onto the activated biochar indicating chemisorptive interaction occurred on surface of the activated biochar. In addition, the intraparticle diffusion limitation was thought to be the major barrier for the adsorption of SMX on the activated biochar. The main mechanisms for the activated biochar would include hydrophobic, π-π interactions and hydrogen bonding. This was consistent with the changes in physicochemical properties of the activated biochar (e.g., increase in sp2 and surface area, but decrease in the ratios of O/C and H/C).

Data Direction Aware Clustering Method in Sensor Networks (데이터 전송방향을 고려한 센서네트워크 클러스터링 방법)

  • Jo, O-Hyoung;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.721-727
    • /
    • 2009
  • Wireless Sensor Networks(WSN) make use of low cost and energy constrained sensor nodes. Thus, reaching the successful execution of its tasks with low energy consumption is one of the most important issues. The limitation of existing hierarchical algorithms is that many times the data are transmitted to the opposite direction to the sink. In this paper, DDACM (Data Direction Aware Clustering Method) is proposed. In this method, the nearest node to the sink is elected as cluster head, and when its energy level reaches a threshold value, the cluster head is reelected. We also make a comparison with LEACH showing how this method can reduce the energy consumption minimizing the reverse direction data transmission.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

Surface Display of Organophosphorus Hydrolase on E. coli Using N-Terminal Domain of Ice Nucleation Protein InaV

  • Khodi, Samaneh;Latifi, Ali Mohammad;Saadati, Mojtaba;Mirzaei, Morteza;Aghamollaei, Hossein
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.234-238
    • /
    • 2012
  • Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.

Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte (산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가)

  • Park, Sijin;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.272-277
    • /
    • 2021
  • Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.

Limitation of Natural Analogue Studies on Rock Matrix Diffusion (기질내에서의 확산작용에 관한 자연유사연구의 한계)

  • Kim, Chang-Lak;Chang, Ho-Wan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.100-104
    • /
    • 1994
  • The rock matrix diffusion provides a retarding mechanism for sorbing and especially non-sorbing radionuclides. It has to be verified not only theoretically and experimentally but also from natural phenomena, before the mechanism can be incorporated fully into transport codes. The natural analogue studies, such as the concentration variation of radionuclides in profiles perpendicular to fluid-conducting fractures and to intrusive contact zones, have been believed to provide a validation. In thermal alteration zones of Naeduckri granite intruded by a pegmatite, large alkali and alkaline earth elements such as K, Rb, Sr, and Ba were moderately migrated during thermal alteration. Li, V. and Nb were also migrated about 9cm in width from the contact between the granite and the pegmatite. The concentration variation of these elements in thermally altered zones seems to be resulted from the local migration due to the re-equilibration among the elements released from the breakdown of primary minerals in the granite. Most of these natural analogue studies simply show only the concentration variation of elements without detailed informations on the diffusion time and other important data fir interpreting the behaviour of radionuclides, because of the absence of appropriate minerals for age data. Despite this problem, natural analogue studies will be needed for transport models of radionuclides in safety assessment.

  • PDF

A Study on Coimmobilized Glucose Oxidase-Catalase System (Glucose Oxidase-Catalase동시 고정화 효소계의 반응)

  • Lee, Suk-Hee;Lee, Sang-Yeol;Uhm, Tai-Boong;Kim, Woo-Jung;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-40
    • /
    • 1985
  • The reactor performance of a coimmobilized glucose oxidase and catalase enzyme system was investigated. In the determination of efficiencies of glucose oxidase and catalase of dual, mixed and soluble systems, the dual type immobilized one was superior to either the soluble or to the mixed system. In the continuous plugflow bed reactor system of glucose oxidase and catalase, $k-d$, deactivation rare constant of glucose oxidase only and catalase/glucose oxidase = 10 were $1.12\;{\times}\;10^{-2}\;and\;2.17\;{\times}10^{-3}\;hr^{-1}$, respectively. In the effect of ${\tau}$, space time, the point of $O_2$ limitation is $5.5\;g{\cdot}hr/l$ in both catalase/glucose oxidase = 1 and 10. In the effect of $O_2$ concentration to reduce the $O_2$ diffusion limitation, it appeared that ${\tau}\;=\;8.3g{\cdot}r/l$ is the maximum point of $O_2$ concentration in both catalase/glucose oxidase = 1 and 10.

  • PDF

The Legal Protection Scope and Limitation of Information (정보의 법적 보호범위와 한계)

  • Kim, Hyung-Man;Yang, Myung-Sub
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.691-699
    • /
    • 2012
  • "Information", which is circulated in society by information technology development represented by computer, has brought innovation not only to physical civilization, but also deep into our daily lives. This is to say that information has brought fundamental change to its form of existence, and value system through being faster regarding the circulation and the way of management being diverse. As time goes by, this kind of change would stimulate more changes to be made as the development of scientific civilization. Therefore, informatization is one of the important characteristic that defines modern society's essence, but on the other side, information has been taken advantage of that temperament and abused in a lot of different ways. "The Law Regarding Computer Network Diffusion Expansion and Usage Promotion"(1986), as a counterplan of informatization is our nation's first Act about informatization, which enacts national policy and system about this issue. Since then, many laws has been enacted down to "Private Information Protection Act"(2011), forming a comprehensive system. The basic background of these laws are based upon the premise that even if the place where the information is managed is virtual space, rules that are considered valid in the real world should be basically applied in the virtual space. Therefore, the violation of the law in the real world is also considered the violation in the virtual space. This direction of current law regarding information is shared with both the theories and the reality. However, current law system and notion are based upon the premise that the law regards material objects, thus the characteristic of the information, which is "Immaterial Being" is not reflected. Also, the management and approach to this issue is allopathic, exposing many problems. Thus, this paper examines the way of protecting information stipulated in the current law, contemplates its protection scope and limitation, and seeks the direction of the improvement, based on the critical mind explained above.