DOI QR코드

DOI QR Code

Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water

  • Jang, Hyun Min (Department of Agricultural and Biological Engineering & Texas A&M AgriLife Research Center at Stephenville, Texas A&M University) ;
  • Yoo, Seunghyun (Department of Forest Biomaterials, North Carolina State University) ;
  • Park, Sunkyu (Department of Forest Biomaterials, North Carolina State University) ;
  • Kan, Eunsung (Department of Agricultural and Biological Engineering & Texas A&M AgriLife Research Center at Stephenville, Texas A&M University)
  • Received : 2018.10.10
  • Accepted : 2018.12.01
  • Published : 2019.12.30

Abstract

The adsorption of sulfamethoxazole (SMX) onto a NaOH-activated pine wood-derived biochar was investigated via batch experiments and models. Surprisingly, the maximum adsorption capacity of activated biochar for SMX (397.29 mg/g) was superior than those of pristine biochars from various feedstock, but comparable to those of commercially available activated carbons. Elovich kinetic and Freundlich isotherm models revealed the best fitted ones for the adsorption of SMX onto the activated biochar indicating chemisorptive interaction occurred on surface of the activated biochar. In addition, the intraparticle diffusion limitation was thought to be the major barrier for the adsorption of SMX on the activated biochar. The main mechanisms for the activated biochar would include hydrophobic, π-π interactions and hydrogen bonding. This was consistent with the changes in physicochemical properties of the activated biochar (e.g., increase in sp2 and surface area, but decrease in the ratios of O/C and H/C).

Keywords

References

  1. Zhao H, Liu X, Cao Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016;310:235-245. https://doi.org/10.1016/j.jhazmat.2016.02.045
  2. Kummerer K. The presence of pharmaceuticals in the environment due to human use - Present knowledge and future challenges. J. Environ. Manage. 2009;90:2354-2366. https://doi.org/10.1016/j.jenvman.2009.01.023
  3. Qi C, Liu X, Lin C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chem. Eng. J. 2014;249:6-14. https://doi.org/10.1016/j.cej.2014.03.086
  4. Kumar A, Xagoraraki I. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in US surface and finished drinking waters: A proposed ranking system. Sci Total Environ. 2010;408:5972-5989. https://doi.org/10.1016/j.scitotenv.2010.08.048
  5. Liu J-L, Wong M-H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013;59:208-224. https://doi.org/10.1016/j.envint.2013.06.012
  6. Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011;45:1827-1833. https://doi.org/10.1021/es104009s
  7. Peiris C, Gunatilake SR, Mlsna TE, Mohan D, Vithanage M. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresour. Technol. 2017;246:150-159. https://doi.org/10.1016/j.biortech.2017.07.150
  8. Zheng H, Wang Z, Zhao J, Herbert S, Xing B. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ. Pollut. 2013;181:60-67. https://doi.org/10.1016/j.envpol.2013.05.056
  9. Akhtar J, Amin NS, Aris A. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using $Fe_2O_3/CeO_2$ loaded activated carbon. Chem. Eng. J. 2011;170:136-144. https://doi.org/10.1016/j.cej.2011.03.043
  10. Boreen AL, Arnold WA, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environ. Sci. Technol. 2004;38:3933-3940. https://doi.org/10.1021/es0353053
  11. de Amorim KP, Romualdo LL, Andrade LS. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: Performance, kinetics and reaction pathway. Sep. Purif. Technol. 2013;120:319-327. https://doi.org/10.1016/j.seppur.2013.10.010
  12. Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009;43:2419-2430. https://doi.org/10.1016/j.watres.2009.02.039
  13. Gao J, Pedersen JA. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 2005;39:9509-9516. https://doi.org/10.1021/es050644c
  14. Chen H, Gao B, Li H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 2015;282:201-207. https://doi.org/10.1016/j.jhazmat.2014.03.063
  15. Caliskan E, Gokturk S. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Sep. Sci. Technol. 2010;45:244-255. https://doi.org/10.1080/01496390903409419
  16. Yu X, Zhang L, Liang M, Sun W. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J. 2015;279:363-371. https://doi.org/10.1016/j.cej.2015.05.044
  17. Tabish TA, Memon FA, Gomez DE, Horsell DW, Zhang S. A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci. Rep. 2018;8:1817. https://doi.org/10.1038/s41598-018-19978-8
  18. Calisto V, Ferreira CI, Oliveira JA, Otero M, Esteves VI. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J. Environ. Manage. 2015;152:83-90. https://doi.org/10.1016/j.jenvman.2015.01.019
  19. Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Sornalingam K. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chem. Eng. J. 2017;311:348-358. https://doi.org/10.1016/j.cej.2016.11.106
  20. Lian F, Sun B, Song Z, Zhu L, Qi X, Xing B. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 2014;248:128-134. https://doi.org/10.1016/j.cej.2014.03.021
  21. Sun B, Lian F, Bao Q, Liu Z, Song Z, Zhu L. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole. Environ. Pollut. 2016;214:142-148. https://doi.org/10.1016/j.envpol.2016.04.017
  22. Xie M, Chen W, Xu Z, Zheng S, Zhu D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014;186:187-194. https://doi.org/10.1016/j.envpol.2013.11.022
  23. Shimabuku KK, Kearns JP, Martinez JE, Mahoney RB, Moreno-Vasquez L, Summers RS. Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res. 2016;96:236-245. https://doi.org/10.1016/j.watres.2016.03.049
  24. Yao Y, Zhang Y, Gao B, Chen R, Wu F. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. 2018:25:25659-25667. https://doi.org/10.1007/s11356-017-8849-0
  25. Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, et al. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour. Technol. 2010;101:8389-8395. https://doi.org/10.1016/j.biortech.2010.05.040
  26. Martinez F, Gomez A. Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion. Phys. Chem. Liq. 2002;40:411-420. https://doi.org/10.1080/0031910021000017735
  27. Jang HM, Yoo S, Choi Y-K, Park S, Kan E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 2018;259:24-31. https://doi.org/10.1016/j.biortech.2018.03.013
  28. ASTM. Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. West Conshohocken: ASTM International; 2016.
  29. Marriott A, Hunt A, Bergström E, et al. Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy. Carbon 2014;67:514-524. https://doi.org/10.1016/j.carbon.2013.10.024
  30. Yoo S, Kelley SS, Tilotta DC, Park S. Structural characterization of loblolly pine derived biochar by X-ray diffraction and electron energy loss spectroscopy. ACS Sustain. Chem. Eng. 2018;6:2621-2629. https://doi.org/10.1021/acssuschemeng.7b04119
  31. Zhang Z-l, Brydson R, Aslam Z, et al. Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope. Carbon 2011;49:5049-5063. https://doi.org/10.1016/j.carbon.2011.07.023
  32. Daniels H, Brydson R, Rand B, Brown A. Investigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). Philos. Mag. 2007;87:4073-4092. https://doi.org/10.1080/14786430701394041
  33. Teixido M, Pignatello JJ, Beltran JL, Granados M, Peccia J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 2011;45:10020-10027. https://doi.org/10.1021/es202487h
  34. Zhu X, Liu Y, Zhou C, Luo G, Zhang S, Chen J. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 2014;77:627-636. https://doi.org/10.1016/j.carbon.2014.05.067
  35. Park J, Hung I, Gan Z, Rojas OJ, Lim KH, Park S. Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour. Technol. 2013;149:383-389. https://doi.org/10.1016/j.biortech.2013.09.085
  36. Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010;44:1247-1253. https://doi.org/10.1021/es9031419
  37. Ji L, Liu F, Xu Z, Zheng S, Zhu D. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons. Environ. Sci. Technol. 2010;44:3116-3122. https://doi.org/10.1021/es903716s
  38. Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 2009;43:2322-2327. https://doi.org/10.1021/es803268b
  39. Chen W, Duan L, Wang L, Zhu D. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environ. Sci. Technol. 2008;42:6862-6868. https://doi.org/10.1021/es8013612
  40. Ji L, Chen W, Zheng S, Xu Z, Zhu D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 2009;25:11608-11613. https://doi.org/10.1021/la9015838
  41. Hansch C, Leo A, Taft R. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991;91:165-195. https://doi.org/10.1021/cr00002a004
  42. Reguyal F, Sarmah AK. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and $17{\alpha}$-ethinylestradiol. Sci. Total Environ. 2018;628:722-730. https://doi.org/10.1016/j.scitotenv.2018.01.323
  43. Chen H, Gao B, Li H. Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. J. Environ. Chem. Eng. 2014;2:310-315. https://doi.org/10.1016/j.jece.2013.12.021
  44. Yoo S. Structural characterizations of biomass-derived carbon materials and application as supercapacitor electrode [dissertation]. USA: North Carolina State Univ.; 2018.
  45. Peng B, Chen L, Que C, et al Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by ${\pi}-{\pi}$ interactions. Sci. Rep. 2016;6:31920. https://doi.org/10.1038/srep31920
  46. Zhou Y, Liu X, Xiang Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017;245:266-273. https://doi.org/10.1016/j.biortech.2017.08.178
  47. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012;114:644-653. https://doi.org/10.1016/j.biortech.2012.03.022
  48. Harvey OR, Herbert BE, Rhue RD, Kuo L-J. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ. Sci. Technol. 2011;45:5550-5556. https://doi.org/10.1021/es104401h
  49. Yang X, Xu G, Yu H, Zhang Z. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresour. Technol. 2016;211:566-573. https://doi.org/10.1016/j.biortech.2016.03.140
  50. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR. Biochar from anaerobically digested sugarcane bagasse. Bioresour. Technol. 2010;101:8868-8872. https://doi.org/10.1016/j.biortech.2010.06.088
  51. Gauden PA, Szmechtig-Gauden E, Rychlicki G, Duber S, Garbacz JK, Buczkowski R. Changes of the porous structure of activated carbons applied in a filter bed pilot operation. J. Colloid Interface Sci. 2006;295:327-347. https://doi.org/10.1016/j.jcis.2005.08.039
  52. Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 2002;40:2177-2183. https://doi.org/10.1016/S0008-6223(02)00076-3
  53. Gicheva G, Yordanov G. Removal of citrate-coated silver nanoparticles from aqueous dispersions by using activated carbon. Colloids Surf. A 2013;431:51-59. https://doi.org/10.1016/j.colsurfa.2013.04.039

Cited by

  1. Removal Efficiency of Pharmaceuticals Using Coffee Residues Biochar Activated with Zinc Chloride and Powdered Activated Carbon vol.41, pp.10, 2019, https://doi.org/10.4491/ksee.2019.41.10.515
  2. Proclivities for prevalence and treatment of antibiotics in the ambient water: a review vol.3, pp.1, 2019, https://doi.org/10.1038/s41545-020-00087-x
  3. Chemical Activation of Forage Grass-Derived Biochar for Treatment of Aqueous Antibiotic Sulfamethoxazole vol.5, pp.23, 2019, https://doi.org/10.1021/acsomega.0c00983
  4. Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution vol.25, pp.4, 2019, https://doi.org/10.4491/eer.2019.232
  5. Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution vol.25, pp.4, 2019, https://doi.org/10.4491/eer.2019.232
  6. Iron-activated bermudagrass-derived biochar for adsorption of aqueous sulfamethoxazole: Effects of iron impregnation ratio on biochar properties, adsorption, and regeneration vol.750, 2021, https://doi.org/10.1016/j.scitotenv.2020.141691
  7. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR vol.273, 2021, https://doi.org/10.1016/j.chemosphere.2021.129649
  8. Potassium hydroxide-modified algae-based biochar for the removal of sulfamethoxazole: Sorption performance and mechanisms vol.293, 2021, https://doi.org/10.1016/j.jenvman.2021.112912
  9. Removal of sulfamethoxazole from aqueous solution onto bagasse-derived activated carbon: Response surface methodology, isotherm and kinetics studies vol.347, 2022, https://doi.org/10.1016/j.molliq.2021.118141