References
- Dwivedi P, Gaur V, Sharma A, Verma N. Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep. Purif. Technol. 2004;39:23-37. https://doi.org/10.1016/j.seppur.2003.12.016
- Huang C, Song M, Gu Z, Wang H, Yan X. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 2011;45:4490-4496. https://doi.org/10.1021/es200256q
- Das D, Gaur V, Verma N. Removal of volatile organic compound by activated carbon fiber. Carbon 2004;42:2949-2962. https://doi.org/10.1016/j.carbon.2004.07.008
-
Nugent P, Belmabkhout Y, Burd SD, et al. Porous materials with optimal adsorption thermodynamics and kinetics for
$CO_2$ separation. Nature 2013;495:1-5. -
Fletcher AJ, Cussen EJ, Prior TJ, Rosseinsky MJ. Adsorption dynamics of gases and vapors on the nanoporous MOF material
$Ni_2(4,4'-Bipyridine)_3(NO_3)_4$ : Guest modification of host sorption behaviour. J. Am. Chem. Soc. 2001;123:10001-10011. https://doi.org/10.1021/ja0109895 - Chiang Y, Chiang P, Huang C. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 2001;39:523-534. https://doi.org/10.1016/S0008-6223(00)00161-5
- Kim K, Ahn H. The effect of the pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater. 2012;152:78-83. https://doi.org/10.1016/j.micromeso.2011.11.051
- Yang K, Suna Q, Xue F, Lina D. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape. J. Hazard. Mater. 2011;195:124-131. https://doi.org/10.1016/j.jhazmat.2011.08.020
- Huang Z, Zhang Y, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
- Carletto VA, Carletto RA, Mazzuchetti G. Experimental investigations on the multi-jet electrospinning process. J. Mater. Process. Technol. 2009;209:5178-5185. https://doi.org/10.1016/j.jmatprotec.2009.03.003
- Feng C, Khulbe KC, Tabe S. Volatile organic compound removal by membrane gas stripping using electrospun nanofiber membrane. Desalination 2012;287:98-102. https://doi.org/10.1016/j.desal.2011.04.074
- Shim WG, Kim C, Lee JW, et al. Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J. Appl. Polym. Sci. 2006;102:2454-2462. https://doi.org/10.1002/app.24554
- Li Q, Xu Y, Wei H, Wang X. An electrospun polycarbonate nano fibrous membrane for high-efficiency particulate matter filtration. RSC Adv. 2016;6:65275-65281. https://doi.org/10.1039/C6RA12320A
- Scholten E, Bromberg L, Rutledge GC, Hatton TA. Electrospun polyurethane fibers for absorption of volatile organic compounds from the air. ACS Appl. Mater. Interfaces 2010;3:3902-3909.
- Han S, Rutledge GC. Thermoregulated gas transport through electrospun nanofiber membranes. Chem. Eng. Sci. 2015;123:557-563. https://doi.org/10.1016/j.ces.2014.11.040
- Su CI, Shih JH, Huang MS, Wang CM, Shih WC, Liu YS. A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation. Fiber. Polym. 2012;13:698-702. https://doi.org/10.1007/s12221-012-0698-3
- Muhammad SK, Shaikh AR, Mohammad MH. Catalytic oxidation of volatile organic compounds (VOCs) - A review. Atmos. Environ. 2016;140:117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031
- Gupta VK, Verma N. Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem. Eng. Sci. 2002;57:2679-2696. https://doi.org/10.1016/S0009-2509(02)00158-6
- Zhou Y, Zhou L, Zhang X, Chen Y. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity. Microporous Mesoporous Mater. 2016;225:488-493. https://doi.org/10.1016/j.micromeso.2016.01.047
- Liu P, Long C, Li Q, Qian H, Li A, Zhang Q. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin. J. Hazard. Mater. 2009;166:46-51. https://doi.org/10.1016/j.jhazmat.2008.10.124
- Goss KU, Eisenrreich SJ. Adsorption of VOCs from the gas phase to different minerals and a mineral mixture. Environ. Sci. Technol. 1996;30:2135-2142. https://doi.org/10.1021/es950508f
- Si P, Mortensen J, Komolov A, Denborg J, Moller PJ. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal. Chim. Acta 2007;597:223-230. https://doi.org/10.1016/j.aca.2007.06.050
- Xueyang Z, Bin G, Anne EC, Chengcheng C, Yuncong L. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017;338:102-123. https://doi.org/10.1016/j.jhazmat.2017.05.013
- Xiaofeng Lu, Ce W, Frédéric F, Nicola P. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energ. Mater. 2017;7:1601301. https://doi.org/10.1002/aenm.201601301
-
Hongjiao N, Chi X, Wei Z, et al. Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable
$Li-O_2$ batteries. ACS Appl. Mater. Interfaces 2016;8:1937-1942. https://doi.org/10.1021/acsami.5b10088 - Vijayakumara E, Subramania A, Fei Z, Dyson PJ. High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. RSC Adv. 2015;5:52026-52032. https://doi.org/10.1039/C5RA04944J
- Kumar A, Brunet J, Varenne C, et al. Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensor. Actuat. B-Chem. 2015;210:398-407. https://doi.org/10.1016/j.snb.2015.01.010
- Lu F, Lee HP, Lim SP. Quartz crystal microbalance with rigid mass partially attached on electrode surfaces. Sensor. Actuat. A-Phys. 2004;112:203-210. https://doi.org/10.1016/j.sna.2004.01.018
-
Gaikwad S, Kim S, Han S.
$CO_2$ capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases. Microporous Mesoporous Mater. 2019;277:253-260. https://doi.org/10.1016/j.micromeso.2018.11.001 - Huang C, Song M, Gu Z, Wang H, Yan X. Probing the adsorption characteristic of metal organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 2011;45:4490-4496. https://doi.org/10.1021/es200256q
Cited by
- Polymer-assisted synthesis and applications of hydroxyapatite (HAp) anchored nitrogen-doped 3D graphene foam-based nanostructured ceramic framework vol.10, pp.30, 2020, https://doi.org/10.1039/d0ra01852j
- The mechanisms of conventional pollutants adsorption by modified granular steel slag vol.26, pp.1, 2021, https://doi.org/10.4491/eer.2019.352
- Enhancing the Decolorization of Methylene Blue Using a Low-Cost Super-Absorbent Aided by Response Surface Methodology vol.26, pp.15, 2019, https://doi.org/10.3390/molecules26154430
- Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration vol.11, pp.11, 2019, https://doi.org/10.3390/nano11113008