• Title/Summary/Keyword: differential system

검색결과 3,113건 처리시간 0.028초

차등 선부호화 기법을 적용한 MU-MIMO 시스템의 성능분석 (Performance Analysis of MU-MIMO employing differential Precoding)

  • 곡청;박노윤;이신;김영주
    • 대한전자공학회논문지TC
    • /
    • 제48권10호
    • /
    • pp.1-6
    • /
    • 2011
  • 본 논문에서는 제한된 피드백 정보를 사용하는 MU-MIMO 하향링크 시스템에 준-대각선 및 구관 행렬, 그리고 동 이득 전송 기법을 이용한 차등 선부호화 기법을 적용하여 sum-rate 및 bit error rate 성능을 분석한다. 시뮬레이션과 성능분석을 통해 기존의 LTE 코드북보다 sum-rate 성능은 최소 0.6bps/Hz, BER 성능은 최소 4dB 개선됨을 보인다.

Resonant Loop Design and Performance Test for a Torsional MEMS Accelerometer with Differential Pickoff

  • Sung, Sang-Kyung;Hyun, Chul;Lee, Jang-Gyu
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2007
  • This paper presents an INS(Inertial Navigation System) grade, surface micro-machined differential resonant accelerometer(DRXL) manufactured by an epitaxially grown thick poly silicon process. The proposed DRXL system generates a differential digital output upon an applied acceleration, in which frequency transition is measured due to gap dependent electrical stiffness change. To facilitate the resonance dynamics of the electromechanical system, the micromachined DRXL device is packaged by using the wafer level vacuum sealing process. To test the DRXL performance, a nonlinear self-oscillation loop is designed based on the extended describing function technique. The oscillation loop is implemented using discrete electronic elements including precision charge amplifier and hard feedback nonlinearity. The performance test of the DRXL system shows that the sensitivity of the accelerometer is 24 Hz/g and its long term bias stability is about 2 mg($1{\sigma}$) with dynamic range of ${\sigma}70g$.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

Implementation of Differential Absorption LIDAR (DIAL) for Molecular Iodine Measurements Using Injection-Seeded Laser

  • Choi, Sungchul;Baik, Sunghoon;Park, Seungkyu;Park, Nakgyu;Kim, Dukhyeon
    • Journal of the Optical Society of Korea
    • /
    • 제16권4호
    • /
    • pp.325-330
    • /
    • 2012
  • Differential absorption LIDAR (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. However, large differences in the on- and off-line laser wavelengths can cause serious errors owing to differential aerosol scattering. To resolve this problem, we have developed a new DIAL system for iodine vapor measurements in particular. The suggested DIAL system uses only one laser under seeded and unseeded conditions. To check the detection-sensitivity and error effects, we compared the results from a system using two seeded lasers with those from a system using a seeded and an unseeded laser. We demonstrate that the iodine concentration sensitivity of our system is improved in comparison to the conventional two seeded or two unseeded laser combinations.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

GENERALIZATION OF A FIRST ORDER NON-LINEAR COMPLEX ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV SPACE

  • MAMOURIAN, A.;TAGHIZADEH, N.
    • 호남수학학술지
    • /
    • 제24권1호
    • /
    • pp.67-73
    • /
    • 2002
  • In this paper we discuss on the existence of general solution of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z})+G(z,\;w,\;\bar{w})$ in the Sololev Space $W_{1,p}(D)$, that is generalization of a first order Non-linear Elliptic System of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z}).$

  • PDF

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

SOME RESULTS ON MEROMORPHIC SOLUTIONS OF Q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • Lingyun Gao;Zhenguang Gao;Manli Liu
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.593-610
    • /
    • 2023
  • In view of Nevanlinna theory, we investigate the meromorphic solutions of q-difference differential equations and our results give the estimates about counting function and proximity function of meromorphic solutions to these equations. In addition, some interesting results are obtained for two general equations and a class of system of q-difference differential equations.

APPROXIMATE CONTROLLABILITY FOR QUASI-AUTONOMOUS DIFFERENTIAL EQUATIONS

  • JEONG JIN MUN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.623-631
    • /
    • 2005
  • The approximate controllability for the nonlinear control system with nonlinear monotone hemicontinuous and coercive operator is studied. The existence, uniqueness and a variation of solutions of the system are also given.