• Title/Summary/Keyword: differential structure

Search Result 1,295, Processing Time 0.031 seconds

Asset Pricing in the Presence of Taxes: An Empirical Investigation Using the Cox-Ingersoll-Ross Term Structure Model Under Differential Tax Regimes

  • Lekvin Brent J.;Suchanek Gerry L.
    • The Korean Journal of Financial Studies
    • /
    • v.2 no.2
    • /
    • pp.171-211
    • /
    • 1995
  • Relatively little is known about the relationship between taxes and asset prices. Differential tax treatment of assets in the same risk class implies differential pricing. Conversely, the ability of tax-exempt investors to engage in tax arbitrage should drive any pricing differences away. The differential tax treatment of classes of US Treasury securities provides a straightforward setting for the examination of possible tax-effects in asset prices. Using the Cox-Ingersoll-Ross Term Structure Model as our framework, we examine the pricing of US Treasury securities over two distinct tax regimes. Evidence that tax effects are not arbitraged away is presented.

  • PDF

Broadband CMOS Single-ended to Differential Converter for DVB-S2 Receiver Tuner IC (DVB-S2 수신기 튜너용 IC의 광대역 CMOS 단일신호-차동신호 변환기)

  • Shin, Hwa-Hyeong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.185-185
    • /
    • 2008
  • This paper describes the broadband SDC (Single-ended to Differential Converter) for Digital Video Broadcasting-Satellite $2^{nd}$ edition (DVB-S2) receiver tuner IC. It is fabricated by using $0.18{\mu}m$ CMOS process. In order to obtain high linearity and low phase mismatch, the broadband SDC (Single-ended to Differential Converter) is designed with current mirror structure and cross-coupled capacitor and current source binding differential structure at VDD. The simulation result of SDC shows IIP3 of 11.9 dBm and IIP2 of 38 dBm. It consumes 5mA current with 2.7V supply voltage.

  • PDF

Lateral stability analysis of multistory buildings using the differential transform method

  • Aydin, Suleyman;Bozdogan, Kanat Burak
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.861-876
    • /
    • 2016
  • The determination of the critical buckling load of multistory structures is important since this load is used in second order analysis. It is more realistic to determine the critical buckling load of multistory structures using the whole system instead of independent elements. In this study, a method is proposed for designating the system critical buckling load of torsion-free structures of which the load-bearing system consists of frames and shear walls. In the method presented, the multistory structure is modeled in accordance with the continuous system calculation model and the differential equation governing the stability case is solved using the differential transform method (DTM). At the end of the study, an example problem is solved to show the conformity of the presented method with the finite elements method (FEM).

Simplified Algorithm of the Novel Steel-concrete Mixed Structure under Lateral Load

  • Li, Liang;Li, Guo-qiang;Liu, Yu-shu
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • In order to improve the seismic behaviors of traditional steel-concrete mixed structure, a novel steel concrete mixed structure consisting of steel frames braced with buckling restrained braces (BRBs) and a concrete tube is proposed. Based on several assumptions, the simplified mechanical model of the novel mixed structure is established, and the shear and bending stiffness formulas of the steel frames, BRBs and concrete tube are respectively introduced. The equilibrium differential equation of the novel mixed structure under horizontal load is developed based on the structural elastic theory. The simplified algorithms to determine the lateral displacement and internal forces of the novel mixed structure under the inverted-triangle distributed load, uniformly load and top-concentrated load are then obtained considering several boundary conditions and compatible deformation conditions. The effectiveness of the simplified algorithms is verified by FEM comparison.

Dual-Mode Balanced Filter in Symmetric Composite Right/Left-Handed Transmission Line Structure (CRLH 전송선로 대칭구조의 이중모드 평형 필터)

  • Kim, Young;Sim, Seok-Hyun;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2013
  • In this paper, a dual-mode balanced filter with symmetric coupled composite right/left-handed transmission line is introduced. Unlike the other symmetric structure, this configuration has the ability to operate under both common- and differential-mode excitation. These properties are achievable through providing physical short circuit by means of ground vias at the center of each unit-cell along the symmetry plane of the structure. Because the CRLH unit-cells are operated under both common- and differential-mode excitation, we implemented a balanced filter using these properties. To validity these features, a five-cell four port coupled CRLH-TL is simulated, fabricated and measured and the obtained performances agree with the simulation results under both common- and differential-mode excitation.

Impossible Differential Cryptanalysis on DVB-CSA

  • Zhang, Kai;Guan, Jie;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1944-1956
    • /
    • 2016
  • The Digital Video Broadcasting-Common Scrambling Algorithm is an ETSI-designated algorithm designed for protecting MPEG-2 signal streams, and it is universally used. Its structure is a typical hybrid symmetric cipher which contains stream part and block part within a symmetric cipher, although the entropy is 64 bits, there haven't any effective cryptanalytic results up to now. This paper studies the security level of CSA against impossible differential cryptanalysis, a 20-round impossible differential for the block cipher part is proposed and a flaw in the cipher structure is revealed. When we attack the block cipher part alone, to recover 16 bits of the initial key, the data complexity of the attack is O(244.5), computational complexity is O(222.7) and memory complexity is O(210.5) when we attack CSA-BC reduced to 21 rounds. According to the structure flaw, an attack on CSA with block cipher part reduced to 21 rounds is proposed, the computational complexity is O(221.7), data complexity is O(243.5) and memory complexity is O(210.5), we can recover 8 bits of the key accordingly. Taking both the block cipher part and stream cipher part of CSA into consideration, it is currently the best result on CSA which is accessible as far as we know.

A Full-Wave Model Analysis on Noise Reduction and Impedance of Power-Bus Cavity with Differential Signaling

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.197-202
    • /
    • 2006
  • This paper presents a study on the differential signaling for the rectangular power-bus structure. The full-wave modal analysis method analyzes how the differential-signaling can lower the power-bus resonance noise levels. The methodology is validated by the use of the FDTD method and reference measurements.

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

Efficient Differential Trail Searching Algorithm for ARX Block Ciphers (ARX 구조를 가지는 블록 암호에 대한 효율적인 차분 경로 자동 탐색 알고리즘)

  • Kim, Seojin;Kang, HyungChul;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1421-1430
    • /
    • 2016
  • In this paper, we suggest an advanced method searching for differential trails of block cipher with ARX structure. we use two techniques to optimize the automatic search algorithm of differential trails suggested by A. Biryukov et al, and obtain 2~3 times faster results than Biryukov's when implemented in block cipher SPECK. This results contribute to find better differential trails than previous results.