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Abstract

In order to improve the seismic behaviors of traditional steel-concrete mixed structure, a novel steel concrete mixed structure
consisting of steel frames braced with buckling restrained braces (BRBs) and a concrete tube is proposed. Based on several
assumptions, the simplified mechanical model of the novel mixed structure is established, and the shear and bending stiffness
formulas of the steel frames, BRBs and concrete tube are respectively introduced. The equilibrium differential equation of the
novel mixed structure under horizontal load is developed based on the structural elastic theory. The simplified algorithms to
determine the lateral displacement and internal forces of the novel mixed structure under the inverted-triangle distributed load,
uniformly load and top-concentrated load are then obtained considering several boundary conditions and compatible
deformation conditions. The effectiveness of the simplified algorithms is verified by FEM comparison.
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1. Introduction

Traditional steel-concrete mixed structure is composed

of steel frame and concrete core tube, which may take

advantages of steel structure and concrete structure since

the vertical resistant efficiency of the steel frame is high,

while the lateral resistant efficiency of the concrete core-

tube is high (Gregory and Hiroshi, 2004; Lu, Qin, and

Luo, 2009; Li, Shi, and Wang, 2009). However, there are

still some deficiencies existed in such steel-concrete

mixed structure. First of all, the ductility of the welding

or welding-bolt connection for traditional steel frames is

poor, and the brittle failures are liable to happen during

earthquakes (Anli, 2005; Eurocode 4, 2004; Hu, 2008).

Secondly, excessive section sizes of the steel frame com-

ponents are required to resist the internal force increased

with damage of the concrete tube during the earthquakes.

However it is very ineffective to improve the lateral

resistant capacity of the steel frame by enlarging the

section of the frame beams and columns.

Considering that: (1) the ductility of semi-rigid connec-

tion is excellent, which can remain a stable flexural ca-

pacity in great plastic deformation, so the brittle failure

may be avoided with semi-rigid beam-column connection

(Duane, 1998; Wang and Zhou, 2011); (2) the moment

distribution of the steel-concrete composite beam can be

optimized by adjusting the rotational stiffness of the

beam-to-column connection, so the consumption of steel

can be reduced (Li, Shi, and Wang, 2009; Yao, Bai, and

Dang, 2010); (3) the buckling restraint brace (BRB) can

reach yielding at tension or compression, and provide

great lateral stiffness and load-bearing capacity to the

steel structure with excellent energy dissipation capability

(Koz, 2002; Li, Shi, and Wang, 2009), a new steel-

concrete mixed structure is proposed. This new mixed

structure consists of steel frames with semi-rigid connec-

tions, BRBs and concrete tube, as shown in Fig. 1 below.

The arrangement of BRBs should follow the principles

below:
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Figure 1. Plan view of the multi-lateral resistant steel-
concrete mixed structure.
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(1) The vertical distribution of BRBs should be continu-

ous along the height of the building, and should be extended

to the foundations of the building with basement;

(2) The arrangement of BRBs should be symmetrical in

the plane of the building.

Test results show that the tensile and compressive

properties of the BRBs are similar under the action of

repeated axial forces, and the hysteretic loop of N-δ is

very full (Li, 2011), as shown in Fig. 2. The axial force-

deformation relation of BRBs agrees quite well with the

bilinear model, and BRBs can be simulated with bilinear

model link element to consider the yielding phenomenon

and energy dissipation of BRBs, as shown in Fig. 3.

Some theoretical studies on the design methods and

seismic behavior of this new steel-concrete mixed struc-

ture have been conducted (Li, Shi, and Wang, 2009; Li,

2011). Several stiffness ratios are proposed to show the

relative stiffness between steel frame, BRBs and concrete

tube. The relationship between the story drift and the

stiffness ratio of the novel mixed structure is studied, and

the optimal stiffness ratio is suggested. The simplified

calculation method for elasto-plastic lateral displacement

of this novel mixed structure in severe earthquakes is

proposed based on the effective damping ratio method of

the equivalent linearization method.

2. Simplified Mechanical Model and 
Assumption

According to the equivalent stiffness principles, the

steel frames, BRBs and concrete core tube can be equi-

valent to the planar overall frame, planar hinged frame

with BRBs and planar overall shear walls respectively,

and they can be further simplified as the parallel can-

tilevers mode, as shown in Fig. 4.

For simplifying formulation, the following assumptions

are employed(Bao, 2001; Wang and Zhou, 2010; Li, Shi,

and Wang, 2009):

(1) the sections of the frame, BRBs and concrete core

tube keep constant along the height of the building;

(2) the planar overall frame, planar hinged frame with

BRBs and planar overall shear wall are linked to each

other by infinitely rigid bars which are continuously

distributed along the height of the building. Equation Sec-

tion 3.

3. Stiffness Calculations
3.1. Steel frame with semi-rigid connection

The lateral stiffness of the column i at story j of the

Figure 2. Tested N-δ relationship of BRBs.

Figure 3. Bilinear N-δ model of BRBs.

Figure 4. Simplified mechanical model of the novel multi lateral-resistant mixed structure.
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steel frame with semi-rigid connections can be expressed

as (Hu, 2008)

(1)

where

β i,j : correction factor of the column j at story i while

considering the influence of semi-rigid connections (Shi-

hua, 2001), see Table 1;

ic,i,j : linear stiffness of column j at story i;

hi : height of the story i.

The shear stiffness of the frame at story i can be

expressed as

(2)

The flexural stiffness of the frame at storey i can be

expressed as (Chinese code, 1998)

(3)

where

Ef : steel elastic modulus of the column;

Iij : section inertia of the column j at story i;

Aij : section area of the column j at story i; 

cij : distance from the column j at story i to the neutral

axis.

3.2. Hinged frame with BRB

The shear stiffness offered by BRBs at story i can be

expressed as (Li, Shi, and Wang, 2009; Hu, 2008)

(4)

where

kij : axial stiffness of the BRB j at story i;

θ ij : angle from the axial direction of the BRB j at

story i to horizontal direction.

While considering the effect of axial deformation of

steel columns, the bending rigidity of hinged frame with

BRBs can be expressed as (Chinese code, 1998)

(5)

where

µ' : reduction coefficient, desirable value should be

0.8~0.9 for the center brace;

Ebc : elastic modulus of the column in hinged frame

with BRB;

Aij : section area of the column j at story i.

The shear deformation effect coefficient  of the hinged

frame with BRBs can be expressed as

(6)

where

H : total height of the concrete core tube.

According to the principle of equal top displacement,

the equivalent bending stiffnessof the hinged frame with

BRBs can be expressed as

(7)

3.3. Concrete core tube

The shear deformation effect coefficient  of the

concrete core tube can be given as
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Table 1. Correction factor of the column βi,j

Floor Schematic diagram βi,j

Middle floor

Base floor

Fixed end

Hinged end

Top floor

βi j,

6ic i j, ,

6ic i 1 j,+,
+

6ic i j, ,

6ic i 1 j,+,
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+ + + + +

----------------------------------------------------------------------------------------------=
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(8)

where

Et : elastic modulus of the concrete;

It : section inertia of the concrete core tube;

µ : shear stress non-uniform coefficient;

Gt : shear elastic modulus of concrete;

At : cross-sectional area of the concrete core tube.

According to the equal top displacement principle, the

equivalent stiffness of the concrete core tube can be

expressed as (Bao, 2001)

(9)

4. Establishment of the Differential Equation

Under arbitrary distribution lateral load q(z), simplified

mechanical model of the novel steel-concrete mixed

structure is shown in Fig. 5(a).

The moment at height z equals to the summation of the

three components

(10)

where

Mf(z) : moment loaded on the steel frame with semi-

rigid connection;

Mb(z) : moment loaded on BRBs

Mt(z) : moment loaded on the concrete tube.

According to the moment equilibrium equation ΣM = 0

in Fig. 5(b), the following equation can be arrived

(11)

Again based on the shear equation ΣQ = 0, it can get

(12)

According to the compatible deformation conditions, it

can be given as

(13)

where

yt(z) : lateral displacement of the concrete core tube; 

yb(z) : lateral displacement of the hinged frame with

BRBs;

yf(z) : lateral displacement of the semi-rigid steel

frame;

yf,M(z) : bending portion of the lateral displacement of

the semi-rigid frame; 

yf,Q(z) : shear portion of the lateral displacement of the

semi-rigid frame.

From the relationship between internal forces and de-

formations, we have

(14)

Substituting Eqs. (13) and (14) into Eq. (10), it can be

arrived that

(15)

Based on material mechanics, we may know that:

(16)

After the second derivation of Eq. (16), and taking the

result into Eq. (12), the following expression can be arrived

(17)

Substituting Eq. (11) and Eq. (14) into Eq. (15), we know

that

(18)

Then substituting Eqs. (17) and (18) into Eq. (15), and
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Figure 5. Simplified model and internal force.



Simplified Algorithm of the Novel Steel-concrete Mixed Structure under Lateral Load 251

letting ξ = z/H, ΣEI = EfIf + (EtIt)eq + (EbIb)eq, then we can

get

(19)

where λ = H , which is a

parameter related with the bending and shear stiffness of

the steel frame, BRBs and concrete core tube.

5. Simplified Algorithm of Lateral 
Displacement

5.1. Under inverted triangle lateral load

Under inverted triangle lateral load, the load density

and bending moment at height ξ can be expressed as

(20)

(21)

Substituting Eqs. (20) and (21) into Eq. (19), we may

obtain the following fourth-order differential equation as

(22)

The general solution of Eq. (22) is

(23)

In Eq. (23), the special solution can be expressed as

(24)

In Eqs. (23) and (24), there are seven unknown coeffi-

cients named A1~A4, and B1~B3.

Substituting Eq. (24) into Eq. (22)we can get

(25)

The seven constants of the general solution can be

determined by geometric and natural boundary conditions

y|ξ =0 = 0, y'|ξ =0 = 0, y''|ξ =1 = 0. We can get

(26)

Substituting Eqs. (25) and (26) into Eq. (23), we can get

(27)

While substituting Eqs. (14) and (21) into Eq. (10) leads

to

(28)

Substituting Eq. (28) into Eq. (14), the derivation of yf,M
is

(29)

From the boundary condition yf(0) = 0, we can get

(30)

Substituting Eq. (30) into Eq. (29) leads to

(31)

The shear force at the top of the frame is 0, which leads

to

(32)

Substituting Eqs. (27) and (32) into Eq. (16), we can
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(33)

From Eq. (27) , the derivation of y is

(34)

The lateral displacement of the frame is composed of

bending and shear lateral displacement, namely

(35)

Substituting Eqs. (31), (33) and (34) into Eq. (35) leads

to
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5.2. Under uniformly distributed load

Using the same solution progress as that under the

inverted triangle load, we can obtain the lateral dis-
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Using the same solution progress as that under the
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6. Simplified Calculation Formulas for 
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The moment and shear of the semi-rigid steel frame at

height ξ can be expressed as:

(42)

7. Comparisons

While establishing the mechanical model, it is assumed

that the horizontal links between the semi-rigid frame,

BRBs and concrete core tube along the height of the buil-

ding are continuous. However, in reality the links between

the semi-rigid frame, BRBs and concrete tube only exist

at the floor level. Therefore the assumption does not agree

with the real situation. In order to identify the reasonable-

ness of the assumption, comparisons are conducted between

the results from simplified model and FEM results on an

example building of the novel mixed structure.

7.1. Introduction of finite element model

The beams and columns in the frame-brace-wall model

are simulated with frame element with two nodes, and each

node has six degrees of freedom, as shown in Fig. 6(a). The

overall concrete shear walls are simulated with layered

shell element, and the layers in the shell element could simu-

late concrete or steel rebar by defining the thickness and

material (Li, Shi, and Wang, 2009; Shihua, 2001), as shown

in Fig. 6(b).

BRBs and semi-rigid connections could be simulated

with two-node link element. One link element is composed

of six individual “springs”, and each spring corresponds to

one of the six degrees of freedom (three translational and

three rotational degrees of freedom). By defining the M-θ

relation of a rotational spring or the N-δ relation of an axial

spring, the link could simulate semi-rigid connections or

BRBs respectively, as shown in Fig. 6(c) and 6(d).

7.2. Example buildings

Figure 7 shows the geometric dimension of the example

buildings, and the horizontal inverted-triangle distributed

load is applied on the structure. The section of the steel

column is H500×500×20×24 and the section of the steel

beam is H500×300×16×18 for the frame. The section of

the column connected with BRB is H300×300×12×16,

and the section of the beam connected with BRB is

H350×200×12×14. The sections of BRBs in different

models are different. The thickness of the concrete wall is

400 mm. The elastic modulus of the steel is 2.0E + 5N/

mm2; the elastic modulus of the concrete is 3.0E + 4N/

mm2; the original rotational stiffness of the semi-rigid

connection for the steel frame is 1.20E + 12N*mm/rad.

7.3. Comparisons of calculation results

The overall lateral stiffness is K=V/∆, where V is the

shear force at the bottom of the building, and ∆ is the

lateral displacement at the top of the building. Study

shows that the height-width ratio of the concrete wall and

the axial stiffness of the BRB have significant influence

to the proportion of the shear deformation in the total

deformation of the structure.

In order to illustrate the applicability and reliability of

the simplified algorithm proposed, two groups of exam-

ple buildings are selected, and the height -width ratios of

the concrete wall are respectively H/B = 9 and H/B = 3.

Seven example buildings in one group are established by

modifying the stiffness of the BRBs. The results of K of

the example buildings with large and small height-width

ratio are listed in Table 2 and Table 3 respectively.

Comparing the relative difference of overall lateral stiff-

ness of all the example buildings obtained between pro-

posed formula and FEM, it is found that the largest rela-

tive difference of the stiffness is 2.13%, which demon-

strates that the formulas derived in this paper are accurate

enough for predicting the behavior of the new steel-

concrete mixed structure.

8. Conclusions

A novel steel-concrete mixed structure is proposed in
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Figure 6. Elements used in the frame-brace-wall model. Figure 7. geometric dimension of the model.
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this paper to improve the seismic behavior of conven-

tional steel-concrete mixed structures. The simplified

algorithms to predict the lateral displacements and inter-

nal forces of the novel mixed structure under inverted-

triangle distributed load, uniformly distributed load and

top-concentrated load are derived based on structural

elastic theory. The conclusions may be drawn as follows:

(1) Although the links between the semi-rigid frames,

BRBs and concrete tube only exist at floor levels, it is

reasonable to assume that the horizontal links along the

height of the building are continuous when establishing

the mechanical model.

(2) The effectiveness of the simplified algorithm is

verified by FEM comparisons. The formulas proposed in

this paper are accurate enough to predict the lateral

displacements and internal forces of the mixed structure.
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Table 2. Results of K obtained by simplified model and FEM for examples A1~A7

Example
Axial stiffness

of BRB (N/mm)
Cbf

(N)
1+3.64

(EbIb)eq
(N·mm2)

K (N/mm)
errors%

Theoretical formula FEM

A1 2160000 4.15E + 09 1.014 2.03E + 16 13501 13213 2.13

A2 576000 1.11E + 09 1.052 1.96E + 16 13414 13125 1.43

A3 324000 6.22E + 08 1.093 1.88E + 16 13329 13047 2.11

A4 216000 4.15E + 08 1.139 1.81E + 16 13239 12968 2.04

A5 162000 3.11E + 08 1.186 1.74E + 16 13155 12898 1.95

A6 108000 2.07E + 08 1.279 1.61E + 16 13007 12776 1.78

A7 79200 1.52E + 08 1.380 1.49E + 16 12868 12661 1.61

Table 3. Results of the K obtained by simplified model and FEM for example B1~B7

Example
Axial stiffness

of BRB (N/mm)
Cbf

(N)
1+3.64

(EbIb)eq
(N·mm2)

K (N/mm)
errors%

Theoretical formula FEM

B1 2232000 4.29E + 09 1.121 1.84E + 16 259231 256410 1.09 

B2 1260000 2.42E + 09 1.215 1.69E + 16 254762 253165 0.63 

B3 900000 1.73E + 09 1.301 1.58E + 16 251224 250313 0.36 

B4 576000 1.11E + 09 1.471 1.40E + 16 245468 245700 0.09 

B5 432000 8.29E + 08 1.628 1.27E + 16 241207 242229 0.42 

B6 324000 6.22E + 08 1.837 1.12E + 16 236658 238474 0.76 

B7 223200 4.29E + 08 2.215 9.30E + 15 230619 233100 1.06
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