• Title/Summary/Keyword: differential polynomials

Search Result 138, Processing Time 0.025 seconds

Weighted Value Sharing and Uniqueness of Entire Functions

  • Sahoo, Pulak
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.2
    • /
    • pp.145-164
    • /
    • 2011
  • In the paper, we study with weighted sharing method the uniqueness of entire functions concerning nonlinear differential polynomials sharing one value and prove two uniqueness theorems, first one of which generalizes some recent results in [10] and [16]. Our second theorem will supplement a result in [17].

Meromorphic Functions Sharing a Nonzero Polynomial IM

  • Sahoo, Pulak
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.191-205
    • /
    • 2013
  • We study the uniqueness of meromorphic functions concerning nonlinear differential polynomials sharing a nonzero polynomial IM. Though the main concern of the paper is to improve a recent result of the present author [12], as a consequence of the main result we also generalize two recent results of X. M. Li and L. Gao [11].

PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

  • Gao, Yingchun;Liu, Kai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.155-166
    • /
    • 2022
  • In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of f(z)nL(g) - a(z) and g(z)nL(f) - a(z), where L(h) takes the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), where k is a positive integer, c is a non-zero constant and a(z) is a nonzero small function with respect to f(z) and g(z). The related uniqueness problems of complex delay-differential polynomials are also considered.

UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL POLYNOMIALS CONCERNING WEAKLY WEIGHTED-SHARING

  • Pramanik, Dilip Chandra;Roy, Jayanta
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.439-449
    • /
    • 2019
  • In 2006, S. Lin and W. Lin introduced the definition of weakly weighted-sharing of meromorphic functions which is between "CM" and "IM". In this paper, using the notion of weakly weighted-sharing, we study the uniqueness of nonconstant homogeneous differential polynomials P[f] and P[g] generated by meromorphic functions f and g, respectively. Our results generalize the results due to S. Lin and W. Lin, and H.-Y. Xu and Y. Hu.

A NOTE ON THE VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIALS

  • Bhoosnurmath, Subhas S.;Chakraborty, Bikash;Srivastava, Hari M.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1145-1155
    • /
    • 2019
  • Let f be a transcendental meromorphic function, defined in the complex plane $\mathbb{C}$. In this paper, we give a quantitative estimations of the characteristic function T(r, f) in terms of the counting function of a homogeneous differential polynomial generated by f. Our result improves and generalizes some recent results.

GENERALIZATION OF LAGUERRE MATRIX POLYNOMIALS FOR TWO VARIABLES

  • Ali, Asad;Iqbal, Muhammad Zafar
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.141-151
    • /
    • 2021
  • The main object of the present paper is to introduce the generalized Laguerre matrix polynomials for two variables. We prove that these matrix polynomials are characterized by the generalized hypergeometric matrix function. An explicit representation, generating functions and some recurrence relations are obtained here. Moreover, these matrix polynomials appear as solution of a differential equation.

CLASSIFICATION OF CLASSICAL ORTHOGONAL POLYNOMIALS

  • Kwon, Kil-H.;Lance L.Littlejohn
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.973-1008
    • /
    • 1997
  • We reconsider the problem of calssifying all classical orthogonal polynomial sequences which are solutions to a second-order differential equation of the form $$ \ell_2(x)y"(x) + \ell_1(x)y'(x) = \lambda_n y(x). $$ We first obtain new (algebraic) necessary and sufficient conditions on the coefficients $\ell_1(x)$ and $\ell_2(x)$ for the above differential equation to have orthogonal polynomial solutions. Using this result, we then obtain a complete classification of all classical orthogonal polynomials : up to a real linear change of variable, there are the six distinct orthogonal polynomial sets of Jacobi, Bessel, Laguerre, Hermite, twisted Hermite, and twisted Jacobi.cobi.

  • PDF

AN ENTIRE FUNCTION SHARING A POLYNOMIAL WITH LINEAR DIFFERENTIAL POLYNOMIALS

  • Ghosh, Goutam Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.495-505
    • /
    • 2018
  • The uniqueness problems on entire functions sharing at least two values with their derivatives or linear differential polynomials have been studied and many results on this topic have been obtained. In this paper, we study an entire function f(z) that shares a nonzero polynomial a(z) with $f^{(1)}(z)$, together with its linear differential polynomials of the form: $L=L(f)=a_1(z)f^{(1)}(z)+a_2(z)f^{(2)}(z)+{\cdots}+a_n(z)f^{(n)}(z)$, where the coefficients $a_k(z)(k=1,2,{\ldots},n)$ are rational functions and $a_n(z){\not{\equiv}}0$.