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CLASSIFICATION OF CLASSICAL
ORTHOGONAL POLYNOMIALS

KiL H. KwON AND LANCE L. LITTLEJOHN

ABSTRACT. We reconsider the problem of classifving all classical
orthogonal polynomial sequences which are solutions to a second-
order differential equation of the form

La(z)y" (z) + £1(2)y (x) = Any(a).

We first obtain new (algebraic) necessary and sufficient conditions
on the coeflicients £; (x) and £>(z) for the above differential equa-
tion to have orthogonal polynomial solutions. Using this result,
we then obtain a complete classification of all classical orthogonal
polynomials : up to a real linear change of variable, there are the
six distinct orthogonal polynomial sets of Jacobi, Bessel, Laguerre,
Hermite, twisted Hermite, and twisted Jacobi.

1. Introduction

All polynomials in this work are assumed to be real polynomials in
the real variable z and we let P be the space of all these real polyno-
mials. We denote the degree of a polynomial 7(z) by deg(w) with the
convention that deg(0) = —1. By a polynomial system (PS), we mean
a sequence of polynomials {¢n(x)}22, with deg(¢n) = n, n > 0. Note
that a PS forms a basis for P.

A PS {¢,(2)}32, is called orthogonal if there i a function g : R —
R of bounded variation on the real line R such that

(1.1) /}éx" du(z)
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is finite for all n = 0,1,... and
(1.2) / m(T)dn(z) dpp(x) = Kpdpmr,  (m and n > 0),
R

where K,, are non-zero real constants and &,,, is the Kronecker delta
function. Furthermore, we shall say that {¢,(z)}32, is classical if
each ¢,(z) (n > 0) satisfies a fixed second-order differential equation
of the form

(1.3) Liyl(z) = L2(z)y"(z) + ta(2)y (2) = Auy(2),

where £3(x) and ¢;(x) are real-valued functions independent of n and
An, is a real constant depending only on n. The classification of classical
orthogonal polynomials is generally attributed to Bochner [3]. In fact,
Bochner (3] considered a general second-order Sturm-Liouville differ-
ential equation of the form

(1.4) az(z)y"(z) + a1 (z)y'(z) + ao(x)y(z) + dy(z) = 0,

where a;(z) (¢ = 0,1, 2) are real- or complex-valued functions and A
is a constant. He then raised and solved the problem : determine all
cases such that for each integer n > 0, there is an eigenvalue X = X\,
for which there is a corresponding polynomial solution of degree n.
He first observed that if the differential equation (1.4) has polynomial
solutions of degree 0, 1, and 2, then a;(z) must be a polynomial of
degree < 7, ¢« = 0,1,2. He then considered cases according to the
degree of ay(z) and, in each case, reduced the differential equation
into a normal form by a suitable complex linear change of variable.
Then, through a detailed analysis of each case, Bochner showed that
up to a complex linear change of variable, the only PS’s that arise as
eigensolutions of the differential equation (1.4) are the following (apart
from non-zero constant factors) :

(a) Jacobi polynomials {Pr(la’g)(a:)}zo:o (o, Byc+3+1¢ {-1,-2,
S
(b) Laguerre polynomials {L£{“(z)}$;;0 (gt {-1,-2,...});
(c) Hermite polynomials {H, ()}, ;
(d) {z"}7% ;
(e) Bessel polynomials {B,(la’m(a:) ©o {a¢ {0,-1,-2,...} and
B#0).
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The orthogonality of the Jacobi polynomials for o and 3 > —1, La-
guerre polynomials for ¢ > —1, and Hermite polynomials was known
long before Bochner’s work. In fact, Bochner (3] did not mention the
orthogonality of the PS’s that he found. The problem of classifying all
classical orthogonal polynomials was handled by many authors there-
after : see, for example, (1], [5], [6], [11], [27], and [31]. The problem
was settled by Lesky [27] in 1962 at least for classical orthogonal poly-
nomials satisfying the orthogonality relation (1.2) in which the function
u(x) is non-decreasing. Lesky [27] showed that the only such orthogo-
nal polynomials are Jacobi polynomials with o and 3 > —1, Laguerre
polynomials with @ > —1, and Hermite polynomials.

It is easy to see that the PS {z"}22, in case (d) above cannot
be orthogonal. The orthogonality of the Bessel polynomials was first
observed by H.L. Krall [18] and later investigated in depth by Krall and
Frink [19]. Bochner [3] observed the relation between the PS in case (e)
above and the half-integer Bessel functions and it is this relation which
motivates the name Bessel polynomials in [19]. The orthogonality of
the Jacobi polynomials for & or § << —1 and Laguerre polynomials for
o < —1 was recently treated by Morton and Krall [32].

A natural question arises : are these four PS’s of Jacobi, Laguerre,
Hermite, and Bessel the only classical orthogonal polynomials? Of
course, if we allow for a complex linear change of variable, as Bochner
does in (3], the answer is yes. However, if we restrict our attention
to a real linear change of variable, as we shall do in this paper, are
there any more classical orthogonal polynomials? As far as the authors
know, no previous work on this classification problem really exhausts
all possibilities.

After obtaining necessary and sufficient conditions (see Theorem 2.9)
for the differential equation (1.3) to have orthogonal polynomials of
solutions in section two, we give a complete classification of classical
orthogonal polynomials in section three. Finally, in section four, we
will discuss the integral or distributional representation of orthogonal-
ity for each classical orthogonal polynomial system found in section
three.
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2. Necessary and sufficient conditions

We call any linear functional ¢ on P a moment functional and denote
its action on a polynomial 7(z) by {0, 7). We define the nth moment
of o by (0,z") (n=10,1,...).

We shall remind the reader in section four below that any moment
functional o has a representation of the form

(0,7) = / r(z)du(x) (v e P),

or

(o,m) = /Rw(;v)d)(a:) dx (meP),

where p(z) is, in general, a function of bounded variation on R and
where ¢(x) is a C*°-function of the Schwartz class. Hence, the orthogo-
nality relation in (1.2) can be expressed in terms of moment functionals.
As we shall see, it is very convenient and advantageous to use moment
functionals instead of using their integral representations in discussing
orthogonal polynomials.

We say that a moment functional o is quasi-definite (respectively,
positive-definite) if its moments {0,,}32, satisfy the Hamburger con-
dition

(2.1) An(o) = det[o;5]7 ;0 #0 (respectively, Ayn(o) > 0)

for every n > 0.

Any PS {P,(z)}22., determines a moment functional o (uniquely up
to a non-zero constant multiple), called a canonical moment functional
for {P,(z)}2°,, by the conditions

(2.2) {(0,Po) #0 and (o,P,) =0, n>1.

DEFINITION 2.1. A PS {P,(2)}2, is called a weak orthogonal
polynomial system (WOPS) if there is a non-trivial moment functional
o such that

(2.3) (0,PnPr) =0 if m#n (mandn> 0).
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If we further have
(2.4) (0, PmPy) = Kpndman,

where K,, are non-zero real constants, then we call {P,(z)}2, an
orthogonal polynomial system (OPS). If each K, > 0, then we call
{P,(z)}%., a positive-definite OPS. In either case, we say that { P,(z)}520
is a WOPS or an OPS relative to ¢ and call ¢ an orthogonalizing mo-
ment functional of {P,(z)}5,.

It is immediate from the orthogonality (2.3) that for any WOPS
{Pn(x)}52,, its orthogonalizing moment functional must be a canonical
moment functional for { P,(x)}5% so that it is unique up to a non-zero
constant multiple.

It is well known (for example, see {4, Chapter 1]) that a moment
functional ¢ is quasi-definite (respectively, positive-definite) if and only
if there is an OPS (respectively, a positive-definite OPS) relative to
o. It is clear that if {P,(x)}22, is an OPS relative to o, then so is
{CnP,(z)}2, for every sequence of non-zero constants C,. Conversely
if o is any quasi-definite moment functional and {F,(z)}22., is an OPS
relative to o, then each P,(z) is uniquely determined up to an arbitrary
non-zero factor. In particular, for any quasi-definite moment functional
o, there is a unique monic OPS relative to o given by

[edy] 01 (o %
1 g1 g2 ... On+1
2.5) P,(z) = ———det : Do i n > 0),
29 Palo)=godet| L (n>0)
Opn—1 On --. 0271
1 T ... z"

where A_1(0) =1 (see [4, Chapter 1]).

We shall call an OPS {P,(z)}22, a classical OPS if for each n > 0,
P, (z) satisfies the differential equation (1.3) for some eigenparameter
Ar. As mentioned in the introduction, if the differential equation (1.3)
has a PS of solutions, then it is necessary that the coeflicients £5(x),
¢1(z), and A, be given by

bi(x) =Y Liy! i=1,2).
(2.6) (z) ;) ( )

An =n(n — 1o + néyy (n > 0),
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where £2, + £3, # 0.

From here on, we shall assume that the differential equation (1.3)
has coefficients given by (2.6).

In 1938, H.L. Krall [17] obtained necessary and sufficient conditions
for an OPS to satisfy a Sturm-Liouville type differential equation of any
order. In case of the second-order differential equation (1.3), Krall’s
result can be stated as :

THEOREM 2.1. A PS{P,(x)}52, is an OPS (respectively, a positive-
definite OPS) satisfying the differential equation (1.3) if and only if its
canonical moment functional ¢ is quasi-definite (respectively, positive-
definite) and the moments {¢,}2° , of o satisfy the recurrence relation
(2.7)

(n€22+£11)an+1+(n€21 +£10)an+n€200n-1 =0 (n >0; 0.1 = O).

For a new and somewhat simpler proof of Theorem 2.1, see [23] ; for
another proof of the general Krall characterization theorem, see [20]
and [25].

We call the recurrence relation (2.7) the moment equation for the
differential equation (1.3). We may use Theorem 2.1 to classify all pos-
sible classical OPS s. However it is very difficult, in general, to solve the
moment equation (2.7) and to see whether the corresponding moment
functional is quasi-definite or not. The disadvantage of the conditions
in Theorem 2.1 is that the equation (2.7) contains not only the coeffi-
cients of (1.3) but also the moments of a canonical moment functional
of a classical OPS of which the existence is not known apriori.

Below, we shall first obtain a necessary condition (see Theorem 2.5)
and then necessary and sufficient conditions (see Theorem 2.9) for the
differential equation (1.3) to have an OPS of solutions. Unlike those
in Theorem 2.1, these conditions involve only the coefficients of the
differential equation (1.3).

We begin with introducing some formal calculus on moment func-
tionals. For a moment functional o and 7 € P, we let 0/, the derivative
of ¢ and 7o, multiplication of ¢ by a polynomial, be those moment
functionals defined by

(2~8) <Ulap> = *<0>p,> (p € P)
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and

(2.9) {(mo,p) = (o, 7p) (p € P).

It is then easy to obtain the following Leibnitz rule for any moment
functional ¢ and polynomial 7(z) :

(2.10) (ro) = 7'o + 7o’

LEMMA 2.2. Let o be a moment functional and 7(x) a polynomial.
(i) Then o = 0 if and only if o’ = 0.
(ii) If o is quasi-definite, then 7(x)o = 0 if and only if 7(z) = 0.

Proof. (1) If o/ = 0, then

-1
n+1

{o,2") = (o, (™)) = (g,2"*1) =0

n+1

for every n > 0 so that 0 = 0. The converse is trivial.
(ii) Assume o is quasi-definite and 7(z)o = 0. Let {P,(z)}2, be
an OPS relative to 0. Suppose m(z) # 0 so that deg(7) = N > 0 and

N
write 7(z) = Z Ci Py (x) with Cy # 0. Then we have
k=0

K
0= (r0, Py) = > Crlo, PcPy) = Cn (0, P%)
k=0

so that Cy = 0 since (o, P3) # 0, contradicting our assumption. The
converse is trivial. O

LEMMA 2.3. If the differential equation (1.3) has a PS of solutions,
then any canonical moment functional o of this PS satisfies the func-
tional equation

(211) (EQ(ZE)O'), - 61 (ZII)(T =0.
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Proof. Suppose that {P,(z)}52, is a PS of solutions of the differ-
ential equation (1.3). Let o be a canonical moment functional for this
PS. Then we have for each integer n > 1,

0= )\n<0, Pn> = (0’, AnPn> = <0,£2Pg + KIPT/J == (1310 — (820)/,}).,,1),
which implies (2.11) since {P,(z)}22, is also a P’S. O

Note that the zero in the right hand side of the equation (2.11) means
the zero moment functional. In other words, the equation (2.11) means

{((ba0) — byo,2™) =0 (n>0),

which is exactly the moment equation (2.7) when it is expressed in
terms of the moments {0,}22 4 of 0.

We call the equation (2.11) the weight equation for the differential
equation (1.3).

REMARK 2.1. If we view the equation (2.11) as a classical differen-
tial equation:

(2.12) (£2(z)s) — £1(z)s = 0,

then any non-trivial solution s(x) of (2.12) is a symmetry factor (see
[29]) of the differential expression L[-] in (1.3). In this sense, we call the
equation (2.12) the symmetry equation of the differential expression
L[-]. For more details on symmetry factors, symmetry equations, and
their applications to orthogonal polynomials, see [16], [25], [28], and
[29)].

It is natural to ask if the differential equation (1.3) always has a PS of
solutions. By direct calculation, it is easy to see that (1.3) has a unique
monic polynomial solution of degree n for each integer n > 0 except
possibly for a finite number of values of n and, for those exceptional
cases of n (if there is any), there may be no polynomial solution of
degree n or there will be infinitely many monic polynomial solutions
of degree n.
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EXAMPLE. Consider the following second-order differential equa-
tion :

(213) Liyl(z) = (1 +2%)y"(2) + (1 - k)z + by () = n(n - k)y(z),

where k£ > 1 is an integer and b is a real constant. Now it is easy to
see that the equation (2.13) has a PS of solutions if and only if & is
odd and b = 0. Moreover when k — 2j+1,75 > 0and b = 0, the
equation (2.13) has a unique monic polynomial solution of degree n for
ng{j+1,j+2,...,2j+1}. Forn ¢ {7+1,7+2,...,25 4+ 1}, it has
infinitely many monic polynomial solutions of degree n.

DEFINITION 2.2 (Krall and Sheffer [21]). The differential expression
L[-]in (1.3) (or the differential equation (1.3) itself) is called admissible
if

(2.13) Am #An for m#n (mandn > 0).

LEMMA 2.4. For the differential expression L[-| in (1.3), the follow-

ing are equivalent :

(i) L[] is admissible ;

(i) An =n(n—1)loy +nbyy #0 (n>1);

(111) fn ¢ {*“Tlé)zg ! n = 0,1,2,. } ;

(iv) The moment equation (2.7) (or equivalently the weight equa-
tion (2.11)) has only one linearly independent solution ;

(v) For each n > 0, the differential equatior. (1.3) has a unique
monic polynomial solution of degree n.

Proof. The proofs of (i)=(ii) and (ii)e (i)« (iv) are trivial.
(ii)=>(i) : This follows from the identity

(nt+m)(A—An) = (n—m)(n+m){faa(n+m—1)+4;) = (n—m)Arym.

(i)=>(v) : For any integer n > 1, let

Py(z) =) _Cpa*  (Cr=1)
k=0
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be a monic polynomial of degree n. Then P, (z) satisfies (1.3) if and
only if

(2.14) Loo(k+2)(k+1)Cp o+ (k+1)(f21k+£10)CR 1+ (A=A )CR = 0
(k=0,1,...,n—1), where C;,; == 0. If L[] is admissible, then all C}
(k=0,1,...,n — 1) are uniquely and successively determined by the
equation (2.14) and our assumption that C} = 1.

(v)=(i) : Assume that the differential equation (1.3) has a unique
monic PS {P,(z)}32, of solutions but L[] is not admissible. Hence
from (ii), we have Ay = Ap = 0 for some integer N > 1. But then

L[Py + kPy] = ANPn + kX Py = 0= An(Pn + k)

for any constant. k. Hence Liy] = Anyy has infinitely many monic
polynomial solutions of degree N, which contradicts our assumption.[]

REMARK 2.2. Let N > 0 be the largest integer such that Ay = 0.
Then for any n > N the differential equation (1.3) can have only one
linearly independent polynomial solution of degre= n.

REMARK 2.3. When ¢3(z) = 0, the differential equation (1.3) re-
duces to the first-order equation
(L1317 + £10)Y (z) = néy1y{z),

which is admissible if and only if ¢, # 0. In this case, the correspond-
ing weight equation is

(51133 + 610)0 = 0,
of which the general solution is

o = C(S(fll.’t + 510),

where ¢ is an arbitrary constant and §(¢112 + £1p) is the Dirac delta
moment functional defined by

<5(€11.’17 + elo),ﬂ'(CB» = F(*gl()/gll) (71' < P)

Since ¢ is not quasi-definite, we can conclude that the above first-
order differential equation can never have an OPS of solutions (see
Theorem 2.1).

By Remark 2.3, we may assume #5(x) # 0 in the differential equation
(1.3). Now we are ready to give a necessary condition for the differential
equation (1.3) to have an OPS of solutions, which will be very useful
in our classification in the next section.
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THEOREM 2.5. Ifthe differential equation (1.3) has an OPS {P,(x)}%_,
of solutions, then L] is admissible.

Proof. Assume that (1.3) has an OPS {P,(x)} X, of solutions and
let o be an orthogonalizing moment functional of | P, (2)}2°,. Then ¢
is a canonical moment functional of {P,(z)}%, and, by Lemma 2.3,
o satisfies the weight equation (2.11). If L[] is not admissible, then,
by Lemma 2.4 (ii), there is an integer N > 1 such that Av = 0.
Consequently, we have

0= AnPvo= (fgpx + glR,\r)O
= (62}),{\,()’)/ - P]/V(fga!/ -+ P;/V(fld) = ILEQPJ/VO')’.

Hence, by Lemma 2.2, we have £, Py = 0. Howcver, fo(z) # 0 (see
Remark 2.3) so that P} (z) = 0, which implies N = 0 contradicting
the fact that N > 1. O

Theorem 2.5 was first proved by Lesky '27] only for positive-definite
classical OPS’s. However his method of proof cainot be extended to
general classical OPS’s since he used the following fact which holds only
for positive-definite OPS’s : for any positive-definite OPS {Pr(2)}5%0,
the zeros of P, (x), n > 1, are real and distinct and no two polynomials
from {P,(z)}2( can have common zeros (see Chihara [4]).

The converse of Theorem 2.5 does not hold in general. For example,
the PS {2"}7°, satisfies the admissible differential equation

2y (x) + 2y (z) = n?y(x)

but {z"}7° is not an OPS. However, we have the following partial
converse of Theorem 2.5.

THEOREM 2.6. If the differential operator L[-] in (1.3) is admissible,
then any PS {P,(z)}5_, of solutions to the differential equation (1.3)
is a WOPS.

Proof. By Lemma 2.4, we may assume that { P, (r)}3°, is the unique
monic PS of solutions to (1.3). Let 7 be a canonical moment functional
of { () }7%4. Then o # 0 by defirition and, by Lemma 2.3, o satisfies
the weight equation (2.11). Then we have for m and n > 0

(/\m _ /\'n)[)nlpn = €2<Pl Pn T Pmpr,;)’ + EI(I), Pn, - PmprlL)

m T

- KQLV;,N” + gl‘/vm,n’
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where W, ,, = P/, P, — P,, P is the Wronskian of P,, and P,. Hence,
by (2.11), we have
(Am = A0, P Pr) = (0, 6W,, , + 64 Wi )
- <€10’ - (fgd)l, Wrm’n> = ().

Consequently, (o, P, P,) = 0 for m # n if L[] is admissible. a

REMARK 2.4. In fact we can prove, by the same reasoning as in the
proof of Theorem 2.6, something more than Theorem 2.6. If L{p] = \p
and L[q] = pg for some polynomials p(z) and g(z) and A # gy, then
(o,pq) = 0 for any moment functional solution o of the weight equation
(2.11). Here we do not need to assume L[] is admissible.

We now seek a criterion for when a WOPS { P, (z)}, is an OPS,
which does not involve a canonical moment functional of {P,(z)}2,.

For any monic PS {P,(x)}32,, there are constants {a,}2 ; and
{Br}22, such that

(2.15) Ppii(z) — (2 — an)P.(z) + BnPri1(2) (n>1)

is a polynomial of degree < n — 2. In fact if F,(z) = > }_,Cpz*
(Cr=1;n>1), then

(2.16)
on =01 — CZL‘H
and

(2.17)
Bn=Cp o= (Ch_y—CrhCrn_, ~CrtE (CY, =0).

At this moment, we need to recall Favard’s theorem (see [10]) which
asserts that a monic PS {P,(z)}32 , is an OPS (respectively, a positive-
definite OPS) if and only if { P,,(x) } 5, satisfies a three term recurrence
relation

(2.18) Poyi(z) = (2 — an)Po(z) — BuProa(z) (n2>1),
where each 3,, # 0 (respectively, 5, > 0).

In the case of WOPS’s, Favard’s theorem can be improved as follows.
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PROPOSITION 2.7 (Krall and Sheffer [21]). A monic WOPS {Pa(2)},
is an OPS (respectively, a positive-definite OPS) if and only if

(2.19) Bn #0 (respectively, 3, > ()

for n > 1, where 3, is the constant given in (2.15).

Proof. See Lemma 1.1 in [21]. O

Once we know a PS {P,(z)}32, is a WOPS (it is so if {P,(z)}>2 o
satisfies an admissible equation (1.3) : see Theorem 2.6), the advantage
of applying Proposition 2.7 over Favard’s theorem is evident. In order
to check condition (2.19), we only need to know the coefficients of 2z~ !
and "% of each P,(z) from a monic WOPS {P,(x) 2 o- More pre-
cisely, we have the following result from Proposition 2.7 and equation
(2.17).

COROLLARY 2.8. Let {P,(z)}52 , bea WOPS and P, ZC” k

(Cy = 1) for n > 0. Then {P,(z)}%, is an OPS (respectwe]y a
positive-definite OPS) if and only if

(2.20)

Bo=Cp o= (Cpy—CrHor | - C 40 (respectively, 3, > 0)

forn > 1, where C!| =

Now combining Theorem 2.5, Theorem 2.6, and Corollary 2.8, we
can obtain necessary and sufficient conditions for the differential equa-
tion (1.3) to have an OPS of solutions in terms of only the coefficients
of the differential expression L|].

THEOREM 2.9. The differential equation (1.3) has an OPS (respect-
ively, a positive-definite OPS) of solutions if and oaly if

) 1 ¢ {_71622 f n = 0»123}

and
(ii) the condition (2.20) holds; i.e. 3, # 0 (resvectively, 3, > 0),
where
(2.21) cro, = nibio + £21(n — 1)]

by = 2l (n - 1)



986 Kil H. Kwon and Lance L. Littlejohn

and
(2.22)

cr, = n(n — ){fz0(€11 + 2€22(n — 1)) + (£10 + £o1(n -- 2))(€10 + €21(n — 1)]

2[811 + 2422(n — 1)][[11 + £22(2n — 3)]
(n>1; C,=0).

Proof. By Lemma 2.4, the above condition (i) is just the admissi-
bility of L[-] which is also equivalent to the fact that the differential
equation (1.3) has a unique monic PS {P,(z)}32, of solutions. If we

set P,(z) = ZC,’C‘Q:’“ (Cpr=1;n>0), then C_, and C"_, are
k=0

given by (2.21) and (2.22), respectively, by solving the equation (2.14)
for k =n —1 and k = n — 2. Hence, Theorem 2.9 follows from Theo-
rem 2.5, Theorem 2.6, and Corollary 2.8. O

We end this section by the following remark.

REMARK 2.5. If we assume that the differential equation (1.3) has
a monic PS {P,(x)}52, of solutions, then {P,(z)}%, is an OPS if
and only if the condition (2.20) holds. For a proof of this statement,
see [24, Proposition 3.7]. Note here that apriori we do not assume that
{Pn(x)}32 o is a WOPS (as in Proposition 2.7) or L[] is admissible (as
in Theorem 2.9). Furthermore, only condition (2.2) must be checked
but not with the conditions given in (2.21) and (2.22). In general, these
latter two equations are not well defined unless the expression L[] is
admissible.

3. Classification

We say that any two OPS’s are equivalent if either one differs from
the other by non-zero constant factors or one is obtained from the other
by a real linear change of variable.

In this section, we will classify all classical OPS’s up to equivalence
classes using Theorem 2.9.

In the following, we let N be the set of all positive integers and use
the notation

(3):1 and (:) _ a(a-l)--l-c!(cz—lan]_)
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for any complex number « and any integer k in N. As with Bochner,
we divide the cases according to the roots of the leading coefficient
Z3(z) of the differential expression L[] in (1.3).

Cases 1: Jacobi polynomials

We assume £33 # 0 and @1 — 4f99€90 > 0. Then, by a real linear
change of variable, the equation (1.3) can be transformed into

Liyl(z) = (1 - 2*)y"(z) + (8 — @) = (e + B + 2)zy/ ()

(3.1) = —n(n+a+ G+ 1y(z).

We assume —(a+ 3+ 1) ¢ N so that L[] in (3.1) is admissible. Then

the equation (3.1) has a unique monic PS {P,Sa”‘a)@)};‘f:o, called the
Jacobi PS, of solutions :

(3.2)
Pl () = (271 Fat ﬂ) - kz; (n * a) (Z + f) (2= 1)"*(z 4 1)}
(n > 0).

PROPOSITION 3.1. The Jacobi PS {P{*(z)}%, is

(i) a WOPS if —(a+ +1) ¢ N ;

(ii) an OPS if and only if —a, —f3, and —(a+ 3+ 1) ¢ N :
(iii) a positive-definite OPS if and only if a and 8 > —1.

Proof. The proof of (i) follows from Theorem 2.6. Now we assume
—(a+B+1) ¢ N. We then have, from (2.20), (2.21), (2.22), and (3.1),

(3.3)
— dnfa+B+n)(a+n)(B+n)
Bn = (a+B8+2n—1)(a+B8+2n)2(a+ 8+ 2n+1) (n>1).

Hence, 3, # O forn > 1 ifand onlyif « +7n # 0 and 3+ n # 0
for n > 1 so that (ii) follows from Theorem 2.9. To prove (iii), it
suffices to show 3, > 0 for n > 1 if and only if @ and 3 > —-1. If
a and 8 > —1, then every factor in (3.3) is positive so that 38, > 0
for n > 1. Conversely, assume G, > 0 for n > 1 but @ < —1 (when
3 < —1, the proof is essentially the same). Then, from 8, > 0, we
have (B + 1)(a+8+3) < 0. f p+1 < 0and a+ G+ 3 > 0, then
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a+0+2<0and 0 <a+2, 8+2<1sothat 3, < 0, which is a
contradiction. If 8+1 > 0and a+ 8+ 3 < 0, then a < —2. Then,
from (3, > 0, we have o + 3+ 5 < 0 and so a < —4. Continuing the
same process, we have that a < —2k for any integer k > 1, which is
impossible. J

The explicit orthogonality of the Jacobi PS {P{*? (z)}eo , for o or
B < -1 (but —a and —3 ¢ N) has been treated by Morton and Krall
[32].

Case 2: Bessel polynomials

We assume f95 # 0 and E%l — 4f92€00 = 0. Then, by a real linear
change of variable, the equation (1.3) can be transformed into

(34)  Llyl(z) = 2% (z) + (az + B)y (z) = n(n + a — 1)y().

We assume —(a — 1) ¢ N so that L[] in (3.4) is admissible. Then the
equation (3.4) has a unique monic PS {B(a’ﬁ)(z)}d .o of solutions :
(3.5)

x™ ifg=0

B,(f"’g)(;p): 1 n'Fa+n+k—]) LA
BT(a +2n — 1) £ Z (n — k)IK! <E) iff#0

(n > 0) When 3 # 0, we call {B{*? (2 )}52 o the Bessel PS. The PS
{z"}52, is a WOPS by Theorem 2.6 but it cannot be an OPS.

PROPOSITION 3.2. The Bessel PS {B£La’ﬁ)(x)}if:0 is an OPS (but
not a positive-definite OPS) if and only if —(a — 1) ¢ N and 3 # 0.
Proof. We assume —(a~1) ¢ N. We then have, from (2.20), (2.21),
(2.22), and (3.4),
-nB%(a+ n—2) .
(a+2n—3)(a+2n—2)2(a+2n—1)

Hence 3, # 0 for n > 0 if and only if 8 # 0 and G, < 0 for n large
enough. Therefore, we have the proposition by Theorem 2.9. 0

(3.6) B, = (n>1).

The Bessel PS, as an OPS, was first observed by H.L. Krall [18]. Ear-
lier these polynomials were discussed by Romanovski [33] and Bochner
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(3]. In [19], Krall and Frink studied the Bessel polynomials in detail
and found, explicitly, their complex orthogonality.

Case 3: Laguerre polynomials

We assume f3; = 0 and f3; # 0. Then by a real linear change of
variable, the equation (1.3) can be transformed into

(3.7) Liyl(z) = 2y"(z) + (o + 1 — 2)y'(2) = —ny(z).

The differential expression L|-] in (3.7) is admissible and so the equation

(3.7) has a unique monic PS {L(a) }20 . called the Laguerre polynomi-
als, of solutions :

38) LW(z )" 'Z<’”a>( D' o).

PROPOSITION 3.3. The Laguerre PS {L ()}, is
(i) a WOPS for every a ;

(ii) an OPS if and only if ~a ¢ N ;

(iii) a positive-definite OPS if and only if a > —1.

Proof. (i) follows from Theorem 2.6. We have from (2.20), (2.21),
(2.22), and (3.7)

(3.9) Brn =nla+mn) (n>1).

Hence 3, # 0 (respectively, 8, > 0) for n > 1 if and only if a +n # 0
for n > 1 (respectively, a > —1) so that (ii) and (iii) follow from
Theorem 2.9. )

The case a = 0 is the one originally studied by Laguerre [26]. The
case o > —1 is due to Sonine [34] and the generalized Laguerre PS for
a < —1 and —a ¢ N has been recently studied by Morton and Krall
132].

Case 4: Hermite polynomials

We assume fog = €31 = 0, €9 # 0, and ¢1; < 0. Then, by a real
linear change of variable, the equation (1.3) can be transformed into

(3.10) Liyl(z) = y"(z) — 22y (z) = —2ny(x).
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The differential expression L[] in (3.10) is admissible and so the equa-
tion (3.10) has a unique monic PS {H,(z)}2, of solutions called the

Hermite polynomials :

xn——2k

1k
(3.11) Ho(@)=nt S k,‘ )

I'(n—2k)! 4k (n 2 0),

where [z] is the integer part of z.

PROPOSITION 3.4. The Hermite PS {H,,(z)}5°_, is a positive-definite
OPS.

Proof. We have from (2.20), (2.21), (2.22), and (3.10)
(3.12) Bo=2  (n>0).

Hence, the proposition follows from Theorem 2.9. O

Case 5: Twisted Hermite polynomials

Assume £23 = f91 = 0, fo9 # 0, and £;; > 0. Then, by a real linear
change of variable, the equation (1.3) can be transformed into

(3.13) Liyl(z) = y"(z) + 22y (2) = 2ny(x).

The differential expression L[-] in (3.13) is admissinle and so the equa-
tion (3.13) has a unique monic PS {H,,(x)}52, of solutions. We call
{Hn(z)}2, the twisted Hermite PS. In order to find H,(x) explic-
itly, we set £ = it and Hn(z) = H,(it) = i"Z, (t) with i = /=1
Then Z,(t) is a monic polynomial of degree n arnd satisfies the Her-
mite differential equation (3.10) so that Z,(¢) = H,(t). Hence, we

have

[n/2;

’ 5 27 . — 1 3;”72]{
(3.14) Hyn(z) = " Hp(—iz) = n! ICLO k! (n

— 2k)! 4k

(n > 0).

PROPOSITION 3.5. The twisted Hermite PS {H,(x)}3%, is an OPS
but not a positive-definite OPS.
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Proof. We have from (2.20), (2.21), (2.22), and (3.13)

(3.15) 8, = “_2". (n>1).
Hence, the proposition follows from Theorem 2.9. d

Case 6: Twisted Jacobi polynomials

We assume g5 # 0 and €%, — 4fs9€50 < 0. Then, by a real linear
change of variable, the equation (1.3) can be transformed into

(3.16) Lly)(z) = (1 +2?)y"(z) + (dz + e)y'(z) = n(n + d — y(z).

We assume —(d — 1) ¢ N so that L[] in (3.16) is admissible. Then
the equation (3.16) has a unique monic PS {P.(z;d,€e)}52, of solu-
tions. We call {P,(x;d,e)}22, the twisted Jacobi PS. In order to

find P,(x;d,e) explicitly, we set z = it and P.(z;d,e) = P,(it;d,e) =
i"Zn(t). Then Z,(t) is a monic polynomial of degree n and satisfies

(1 —t3y"(t) + (ie — dt)y'(t) = —n(n + d — D)y(2),
which is the Jacobi differential equation (3.1) when
te=08—-a and d=a+F+2

Hence we have Z,(t) = Pr(ba’ﬁ)(t) and R(La’ﬁ)(:r) = i”Pp(La’ﬁ)(—i:c) S0
that
(3.17)

. n+a+ A /mra\n+4 - .

(a,8) — __\n—k k

B (z) ( . ) Z( . )(n_k (z— &)™ *(z+1)
k=0

(n > 0), where P,(x;d,e) = Py(c;a+ 8+ 2,i(c — 3)) = P,Sa’ﬁ)(m).

Note that even though the expression for pl? )(x) in (3.17) involves

1, plP )(.7:) is a real polynomial of degree n since g = &.

PROPOSITION 3.6. The twisted Jacobi PS {P,E""ﬁ )(:c)};?:o is an
OPS (but not a positive-definite OPS) if and only if —(a+ 8+1) ¢ N.
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Proof. We have, from (2.20), (2.21), (2.22), and (3.16),

(3.18)
g, — —4dn{a+ B+ n)(a+n)(8+n) -
n‘“(a+[)’+2n-—1)(a+g+2n)2(a+6+.’m+1) (n>1).

Since 8 = @&, 3, # 0 for n > 1 if and onlyifa--F+n#0forn>2
and B, < 0 for n large enough. Hence, the proposition follows from
Theorem 2.9. O

The twisted Jacobi PS first appeared in the paper [33] of Romanovski
as a PS satisfying the differential equation

(2® +a®)y" (@) + [2(1 — m)z - valy'(&) — n(n + 1 — 2m)y(x) = 0,

where a, m, v > 0. He provided identities for the twisted Jacobi PS in-
cluding the three term recurrence relation, the differentiation formula,
and the orthogonality (with an incorrect weight function ; see section
four).

As discussed in the introduction, Bochner [3] classified the so-called
Sturm-Liouville polynomial systems that can arise as eigenfunctions of
the differential equation (1.3). His analysis allowed a complex linear
change of variable in his classification. Consequently, he identified the
Hermite PS with the twisted Hermite PS, and the Jacobi PS with the
twisted Jacobi PS.

Later, Cryer [5] found the twisted Jacobi PS as the Jacobi PS
with complex parameters in his characterization of the classical OPS’s
through the Rodrigues’ type formula.

Lastly in this section, we discuss briefly the problem of finding mo-
ments of the classical OPS’s.

For each classical OPS, we can compute the moments {00 }5° o of its
canonical moment functional o by solving the corresponding moment
equation (2.7) successively starting from any non-zero value for 0p.
However, the moment equation is, in general, a three term recurrence
relation, which is not easy to solve. Morton and Krall [32] introduced
an idea by which we can always reduce a three terin recurrence relation
to a two term recurrence relation. Let t = T—xo, where I is a constant,
possibly complex, that will be chosen later. Then. in terms of the new
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variable ¢, the differential equation (1.3) and the corresponding moment
equation (2.7) become

[822152 + (2€22$0 + 62] )t + 6221‘% + £oq Tg + €20]y”(t)

(3.19) ,
+ [l11t + (11 + £10)]Y' (1) = Any(t),
and
(3.20) (€11 + nlaa)on i1 (o) + [€11T0 + L10 + (282270 + £21) |0 (T0)

-+ TL(EQQ.’L‘% + fo1x0 + £20)0n~1(.’£0) =0 ('n > 0),

where a,(x¢) = {(0,(z — zo)™) is the nth moment of o about zy. If
we choose g so that £2223 + £2120 + £20 = 0, then the equation (3.20)
becomes a two term recurrence relation and we have

(3.21)

on = {o,2") = (0, [(x —zo) + zo]™) = Z (Z):cg_'kak(xo) (n > 0).

k=0

We illustrate the above procedure for the twisted Jacobi polynomi-
als; see Morton and Krall [32] for a similar discussion of the moments
for the other classical OPS’s, except the twisted Hermite PS. The mo-
ment equation for the twisted Hermite PS is a two-term recurrence
relation, which can be solved easily.

Let & = 5(®#) be the canonical moment functional of the twisted
Jacobi PS {Pr(lay"a )(17)}%0:0 with &9 = (§,1) = 1. The corresponding
moment equation is

(322) (a+fB+n+2)dnp1+ila0—B)on+ndn 1=0 (n>0),

which is a three-term recurrence relation unless o = 8. If we choose
zo to be ¢ and let {5,(7)}52, be the moments of & about i, then
{6 (1)}, satisfies a two-term recurrence relaticn

(a+B+n+2)Fn41(t) +2i(a+n+1)5,() =0 (n>0),

from which it follows that

i) = (~1)"(28)"(a + 1)y
" (a+3+2),

(n > 0),
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where (a)o = 1 and (o) = a(@ +1)---(a + k - 1) for any complex
number « and integer k£ > 1. We now obtain, from (3.21),

s (2P (e 1y,
On =1 Z

(3:23) (a+ 3+ 2);

(n>0).
5=0

Similarly, if we use &, (—¢) instead of 6,(z), we then obtain

(3.24) Gn = (—i)"

a+fF+2); (n>0).

J

= () (=2)(8+1);
=

Note that all &,, are real since the complex conjugate of &, (recall
B8 = @) in (3.23) is exactly &, in (3.24).

4. Integral representation of orthogonality

Although using moment functionals to introduce orthogonality has
many advantages as we have seen in previous sections, it is still de-
sirable to express the orthogonality as an integral with respect to a
suitable measure. Such an integral representation of orthogonality is
always possible due to the following classical results on the moment
problem .

Given any sequence {0,,}2, of real numbers,

(1) (Boas [2]) there is a function p: R — R of bounded variation
on R such that

(4.1) On = /R.r" du(x) (n>0);

(ii) (Duran [7]) there is a C®-function ¢: R —» R in the Schwartz
space S such that

(4.2) Op = /R:z:"qb(:c) dz (n >0).
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Hence for any moment functional o, there is a distribution we(x) on
R (for example, we may take w,(z) to be @(z) in (4.2)) such that

(4.3) {o,m) = (wy,m) (meP),

where (w,, ) is the action of the distribution w, (x) on the test func-
tion m(x). In particular, if o is an orthogonalizing moment functional of
an OPS {P,(z)}52, we call wy(z) in (4.3) an orthogonalizing weight
for {Pn(z)}72,.

Recently, there have been several attempts of effectively finding or-
thogonalizing weights for various classes of OPS’s. Morton and Krall
[32] introduced a formal §-series expansion of a moment functional o :

7% Y (=1)"0,6((z)/n!
n=0

and found, via the Fourier transform, orthogonalizing weights for the
Jacobi, Laguerre, and Hermite PS’s. This formal é-series expansion
was also used in Kim and Kwon [14] to produce an orthogonalizing
hyperfunctional weight for the Bessel PS {B,(lz’m(:c)}ff:o.

In case of a classical OPS {P,(x)}, satisfying the differential
equation (1.3), we may use the corresponding weight equation (2.11)
to find an orthogonalizing weight for {P,(z)}2,. To do this, how-
ever, we must interpret (2.11) as a classical differential equation with
the right-hand side of (2.11) replaced by a function (not necessarily
identically zero) having zero moments.

To be precise we have the following Theorem, which is a special case
of Theorem 2.3 in [22] for second-order differential equations (see also
[28, Theorem 5.6)).

THEOREM 4.1. Let {P,(z)}32, be a classical OPS satisfying the
differential equation (1.3). If w(z) is an orthogonalizing weight distri-
bution for { P,,(z)}32,, then w(z) satisfies the distributional differential
equation

(4.4) (ba(z)w(z))’ — b (z)w(z) = g(=),
where g(x) is a distribution having zero moments; that is,

(4.5) (g(x),z"™) =0 (n > 0).
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Conversely, if w(z) is a distribution such that
(1) w(x) decays rapidly at infinity so that < w,z™ > exists and is
finite for alln > 0 ;
(ii) w(x) is a solution to equation (4.4) on R distributionally ;

and
(iii) w(z) Is non-trivial as a moment functional.

then w(zx) is an orthogonalizing weight distribution for { P, (z)}52,.

Condition (iii) in the above Theorem 4.1 means that (w,z™) # 0 for
some n > 0. For any classical OPS, there always exists a distributional
orthogonalizing weight w(z) satisfying the conditions (i), (ii), (iii) in
Theorem 4.1. In fact, it is enough to take w(z) to be ¢(z) in (4.2)
where {0,}32, are the moments of any canonical moment functional
o of the given classical OPS.

We call the equation (4.4) the non-homogeneous weight equation
for the differential equation (1.3). When g(x) = 0, the homogeneous
weight equation

(4.6) (la(z)w(z)) ~ bi(z)w(z) =0

is exactly the symmetry equation (2.12) of (1.3) (see Remark 2.1).

Although it turns out that it is enough to solve classically the
homogeneous weight equation (4.6) for an orthogonalizing weight for
any positive-definite classical OPS (as shown by Lesky [27]), we must,
in general, consider the non-homogeneous weight equation (4.4) in the
space of distributions; see, for example, Kwon, Kim, and Han [22] for
the case of the Bessel PS and Littlejohn [28] and Krall and Littlejohn
[16] for other classical OPS’s as well as non-classical OPS’s satisfying
higher order differential equations.

There are several examples of non-trivial continuous functions hav-
ing zero moments available. For example, the function g(zx) given by

0 ifx<0
(4.7) g(x) = Lo 1y L.
exp(—x7)sin(z7) ifz >0

is continuous on R and has zero moments. This function was found
by Stieltjes [35]. For more such examples, we refer to Hardy [12] and
Maroni [30].
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Once an orthogonalizing weight w(z) (or any orthogonalizing mo-
ment functional o) of an OPS {P,(z)}32 is chosen, the squared norms
(w, P2) can be computed most easily from the three-term recurrence
relation (2.18). In fact, we have (see [4, Theorem 4.2 in Chap. 1))

(4.8) (w(z), P2) = [] 8,
J=0

where o = (w, P§) = (w,1) and 3,, (n > 1) are the constants in (2.18).

We shall now construct an orthogonalizing weight for each classical
OPS found in section three. We always assume that the parameters
involved in each PS are restricted so that the PS is an OPS.

Case 1: Jacobi polynomials

In this case, the homogeneous weight equation corresponding to the
Jacobi differential equation (3.1) is

(4.9) (1-2)w'(z) + [(a+ Bz — (8 — a))w(z) =0,
which is equivalent to
(4.10) (1-2H)[(1 -z)" %1+ z) Pw(@)) =0

for z # 41. Then the general distributional solution of (4.10) for
r#+1lis

w(z) = [ctH(1 —z) + coH(1 + 2) + e3)(1 — 2)%(1 + z)?,

where ¢; (2 = 1,2, 3) is an arbitrary constant and H (z) is the Heaviside

function. If we choose ¢; = —1, ¢; = +1, and ¢3 = 0, then this w(z)
extends to a distribution on R (see Remark 4.1 below) :
(4.11) w®(z) = (1 -2)3(1 + 2)7,

which is a non-trivial distributional solution to (4.9) on R with compact
support [—1,1]. Since w(*#)(z) satisfies the conditions (i), (i), (ili) in
Theorem 4.1, w(*#)(z) is an orthogonalizing weight for {P,(la’ﬁ ) (T)}2.,-
We then have, from (3.3) and (4.8),
(4.12)
(@D (), [P ()]?)
_ 22t (4 o+ D)I(n+ 84+ 1)D(n+a+ 8+ 1)n!
N F'2n+a+B8+1)I2n+a+ 6+ 2)

a-+3+1 o
for n > 0, since (w(*A)(z),1) = 2 +F(Fof+gi§;(5+l).
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REMARK 4.1. For any complex number a, consider the function f,:
R — C defined by
0 ifz<0

fal@) = { 2 ifr>0

where we take log z to be real for z > 0 so that z* is defined uniquely
for z > 0. The function f,(z) always extends to a distribution z% on
R with support in [0,00). For Rea > —1, f,(z) is locally integrable
on R so that 2% = fo(x) and for Rea < —1, % is obtained from
fo(x) by analytic continuation and regularizatior. For details on the
distribution 2%, we refer to Hérmander [13, Chap. 3.3.2]; see also
Morton and Krall [32] for an explicit integral representation of the

distribution w(®?)(z) in (4.11).

Case 2: Bessel polynomials

In this case, it is more convenient to replace = by %C and a by a+2
so that the equation (3.4) becomes

(4.13) Lly|(z) = 2%y"(z) + [(a + 2)z + 2/ (z) = n(n + o + Dy(z),

where —(a + 1) ¢ N. We then denote BT(LQH’Q)(:I?) by B,(q,a)(a:). Now,
the homogeneous weight equation corresponding o (4.13) is

(4.14) 2w (z) — (ax + 2w(z) = 0,

of which the only one linearly independent distributional solution with
support in [0, 00) is

(4.15) (z) { 0 ifz<O
. wolxz) =
0 z®exp(—2/x) ifz > 0.

Romanovski [33] used wo(z) as an orthogonalizing weight for Bessel
PS, but wo(z) cannot be an orthogonalizing weight since it does not
decay rapidly at infinity. In fact, we have

lim z"wp(z) = 0o
—r00

for n+ a > 0. We now consider the non-homogeneous weight equation

(4.16) 2w’ (z) — (az + 2)w(z) = g(z),
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where g(z) is a function with zero moments. For z # 0, the general
solution of (4.16) is

( ) { cl(__m)aC—Q/l‘ lf:L' <0
unxr) = x
ze™T [F e/t ag(t) dt + cpr®e® if x> 0,

where c; and ¢, are arbitrary constants. With concern for the boundary
condition (i) in Theorem 4.1, we choose ¢; = 0 and ¢y = — fooo e2/ty—2-a
g(t) dt to obtain

411w = { L=
. w )= fo's) .
—x¥em/® [ e2/t=2mg(t)dt if z > 0.

If we further take g(x) to be the function given in (4.7), then w(® in
(4.17) is a continuous function on R satisfying the conditions (i) and (i)
in Theorem 4.1 (see [9], [22], and [30]). Hence, w(*)(z) in (4.17) (with
g(zx) in (4.7)) is an orthogonalizing weight for Bessel PS {By(la)(m) 20
if and only if

(o ] o0
(4.18) <w<a>(x),1>:--/ %/ [/ e*/tt g (t) dt| dz # 0.
0

Condition (4.18) was first proved in [22] for o = 0 and, recently, Maroni
[30] proved (4.18) for all o > 12(2)* - 2.

If we let 0'®) be the canonical moment functional of {Bf(la)(:c) ® o
with 0((,“) =1, then we have from (3.6) and (4.8)

(4.19) |
a o _ (—4 "Il (a+ 2)['(a+n+1)
(0@ B (z)]?) = Mot on i e ;i D

(n>0).

REMARK 4.2. Krall and Frink [19] found the complex orthogonal-
ity (now called the Bessel orthogonality) of the Bessel PS through the
contour integral along the unit circle in the complex plane. Although
the homogeneous weight equation (4.14) cannot yield a distributional
orthogonalizing weight for the Bessel PS, it has a non-trivial hyperfunc-
tional solution with support at {0} with respect to which the Bessel
PS is orthogonal (see [9], [14], and [15]).
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Later in this section, we will discuss again real orthogonalizing
weights for {Béa)(x) o o for any o with —(a + 1) ¢ N.

Case 3: Laguerre polynomials

In this case, the homogeneous weight equatior: corresponding to the
Laguerre differential equation (3.7) is

(4.20) zw'(z) + (z — a)w(z) = 0.
If we set v(z) = e*w(z), then v(x) satisfies the Euler equation
zv'(z) - av(z) = 0,
of which the general distributional solution is
v(z) = 125 + oz,
where ¢; and ¢; are arbitrary constants and z® is the distribution on R

with support in (~o0,0] (defined similarly as z%; see Remark 4.1 and
Hérmander [13, Chap. 3.3.2]). Hence, the general solution of (4.20) is

w(x) =c1z%e T + cox®e .

For this w(x) to vanish at infinity, c; must be zero. Then by taking
c1 = 1, we obtain

(4.21) w®(z) = z%e72.

Since w(®)(z) in (4.21) satisfies the conditions (i), (ii), (iii) in Theo-
rem 4.1, w(®)(z) is an orthogonalizing weight for {L%a)(:zr)}%"___o. Since

(zGe ", 1) =Ta+1)
we have, from (3.9) and (4.8),

(4.22) (w (), [L{(2)]?) = nIT(n+ a + 1).

Case 4: Hermite polynomials
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In this case, the homogeneous weight equation corresponding to the
Hermite differential equation (3.10) is

(4.23) w'(z) + 2zw(z) = 0,
of which the only one linearly independent distributional solution is
(4.24) w(z) = exp(—z?

)
Since w(z) in (4.24) satisfies the conditions (i), (ii}, (iii) in Theorem 4.1,
w(z) is an orthogonalizing weight for {H,,(x)}32,. We then have, from
(3.12) and (4.8),
(4.25)

(w(zx), H2(z)) = [m H:(z)exp(—z?)dx = /mnl 2" (n >0).

Case 5: Twisted Hermite polynomials

In this case, the homogeneous weight equation corresponding to the
twisted Hermite differential equation (3.13) is

(4.26) w'(z) - 2zw(z) = 0,
of which the only one linearly independent distributional solution is
wo(z) = exp(z?),

which cannot be an orthogonalizing weight. However, from (3.14) and
(4.25), we can obtain the complex orthogonality :
(4.27)
H,(z)H,(x) exp(2?) de = (—1)"v/7Tn! 27 "i5,,,, (m and n > 0)
Let us now consider the non-homogeneous weight equation
(4.28) w'(z) — 2zw(z) = g(z),

where g(z) is a non-trivial continuous function on R with zero moments
and support in [0,00). Then the general solution of (4.28) is

, . xT
w(z) = ce® + c’”z/ e_tzg(t) dt,
0
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where ¢ is an arbitrary constant. For this w(z) to vanish at infinity, ¢
must be zero and

(4.29) / e g(z)dz = 0.
0
Then we have

(4.30) w(z) = { 0 ifz<0

e’ Iy e Po(tydt ifx >0

Note that w(z) in (4.30) is a classical solution to (4.26) on R. If we
further assume

(4.31) lim z"g(z) =0 (n >0),

=00

then it is easy to see that

lim z"w(z) =0 (n>0),

T—r00

and so w(z) satisfies the conditions (i), (ii) in Theorem 4.1. Conse-
quently, w(z) in (4.30) is a real orthogonalizing weight for {H,(z)}3
if and only if

(4.32) (w(z),1) = /O " [ /0 Te_tzg(t) dt] dz # 0.

The existence of a weight w(x) for the twisted Hermite PS, of the
form given in (4.30) and satisfying (4.29), is discussed below in Remark
4.3.

If we let o be the orthogonalizing moment functional for { H,,(x)}%,
with og = /7, then we have, from (3.15) and (4.8),

(4.33) (0, [Ha(2)) = (~1)"VAni2™ (2> 0).
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REMARK 4.3. We can easily see that there is a non-trivial func-
tion g(x) with zero moments, which also satisfies the condition (4.29).
Choose any two linearly independent continuous functions g;(z) and
g2(x) with zero moments and support in [0,00). Set

A; :/ e”$2gi(m)drz (i=1,2).
0
If A; #0 (i =1,2), then

9(z) = A2g1(x) — A1g2()
satisfies the condition (4.29) and has zero moments.

Case 6: Twisted Jacobi polynomials

In this case, the homogeneous weight equation corresponding to the
twisted Jacobi differential equation (3.16) is

(4.34) (1+ z*)w'(z) + [(d - 2)z + eJw(z) = 0,

of which the only linearly independent distributional solution is

2-d

f(z) = (1 + 2% 7= exp(—earctanz).

Romanovski [33] used f(x) as an orthogonalizing weight for the twisted
Jacobi PS, but f(z) cannot be an orthogonalizing weight since it does
not decay rapidly at infinity. In fact, we have

Ili)n;ox flz) =00

for n + 2 — d > 0. However, from (3.17) and (4.12), we can obtain the
complex orthogonality
(4.35)
(1= 2)5(1 +a)f, P (iz) B (ix))
_(—nr22tetBHP(n o+ DI(n+ 8+ DI(n+ a+ 8+ 1)n!
N '2n+a+38+1)I'2n+a+8+2) e

(m and n > 0), whereie=fF ~aandd=a+ 3-- 2.
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Let us now consider the non-homogeneous weight equation
(4.36) (1+ 2®)w'(z) + [(d - 2)z + eJw(z) = g(z),

where g(z) is a non-trivial continuous function on R with zero moments
and support in [0,00). Then the general solution of (4.36) is

w(z) = ef(‘”)[c+ [)I c_f(t)(l + 37 g(¢) dt],

where c is an arbitrary constant. For this w(z) to vanish at infinity, ¢
must be zero and

(4.37) / O 1 ) 1g(t) dt = 9.
0

Then we have

(4.38) v()_{() ifr<0
' PEZ s @ 2 et 1 ) gty dt iz > 0.

Note that w(z) in (4.38) is a classical solution to (4.36). If g(x) satisfies
the condition (4.31), then w(z) satisfies the conditions (i) and (ii) in
Theorem 4.1. Consequently, w(x) in (4.38) is a real orthogonalizing

weight for {P{** )(9:) % o if and only if

(4.39) (w(m),1>=/oooef<1> [/(‘xe"f(t)(l—kt?) Lg(t)dt| dx # 0.

}

If we let & be the orthogonalizing moment functional of {PT(LO‘”B ) ()},
with
22D (o + D)I(B + 1)

7= Ta+pf+2)
then we have, from (3.18) and (4.8),
(4.40)
(&, [PAP) (2)%)
(=1)"22+etdHP(n 4 o+ )I(n+ B+ 1)T(n+ a+ 8+ 1)n!
F'2n+a+ 8+ 1)I'2n+a+ 8+ 2) '

(n>0)
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REMARK 4.4. In the formula (4.12), the parameters a and 3 are
real numbers with —(a + 8+ 1), —a, and —3 ¢ N. However, by
analytic continuation, the same formula holds for complex parameters
o and 3 as long as —Re(a + 08+ 1), —Rea, and Reﬂ¢ —N. This
fact is used in (4.35), where 3 = @, Rea = Re 8 = 432 and —(d—1) =
—(a+8+1)¢N.

Constructing explicit real orthogonalizing weights for classical OPS’s
by solving the non-homogeneous weight equation (4.4) has been suc-
cessful except, at the moment, for the Bessel PS {Bﬁla)(x) % o when
0 # a < 12(2)* — 2, the twisted Hermite PS {fln(:c)}nzo, and the
twisted Jacobi PS {]57(,6"5)(3:)}20:0. For any OPS (classical or not), its
real orthogonalizing weight can be explicitly constructed by the follow-
ing remarkable result on the general moment problem.

THEOREM 4.2 (Duran [8]). For any sequence of real or complex
numbers {0,}22 ,, define a function w(x) by

(4.41) (2) { 0 ifz <0
. x) = 00 100 .

v L[5 Onent™h(Ant))Jo(Vl) dt i > 0,
where ¢, = ‘iﬁ;(';%, A =1+ 4 _oCn, Jo(z) is the Bessel function
of the first kind, and h(z) is a C*-function on R with compact support
satisfying h(0) = 1 and h™)(0) = 0 (n > 1). Then, w(z) is a function
in the Schwartz space S and satisfies

oo o]
/ z"w(z)dzr = / z"w(z)dr = o, (n>0).
—00 0

In particular, if we take {0,}22, in Theorem 4.2 to be the mo-
ments of a canonical moment functional of any classical OPS, then the
function w(z) in (4.41) is a real orthogonalizing weight for the OPS.
Moreover, by Theorem 4.1, the function

9(z) = (La(z)w(x)) — &L()wiz)

is a function, in the Schwartz space S with zero moments and support
n [0,00), satisfying the condition (4.31). In the case of the twisted
Hermite or the twisted Jacobi polynomials, this g(z) also satisfies (4.29)
and (4.32) or (4.37) and (4.39) respectively.
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REMARK 4.5. In the case of the Bessel, the twisted Hermite, and the
twisted Jacobi polynomials, their complex orthogonality seems more
natural than their real orthogonality. In fact, through the hyperfunc-
tional representations of orthogonalizing weights, we can see that any
OPS has both real and complex orthogonality : see, for example, 14].
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