• Title/Summary/Keyword: differential education

Search Result 607, Processing Time 0.029 seconds

NUMERICAL RESULTS ON ALTERNATING DIRECTION SHOOTING METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

  • Kim, Do-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.57-72
    • /
    • 2008
  • This paper is concerned with the numerical solutions to steady state nonlinear elliptical partial differential equations (PDE) of the form $u_{xx}+u_{yy}+Du_{x}+Eu_{y}+Fu=G$, where D, E, F are functions of x, y, u, $u_{x}$, and $u_{y}$, and G is a function of x and y. Dirichlet boundary conditions in a rectangular region are considered. We propose alternating direction shooting method for solving such nonlinear PDE. Numerical results show that the alternating direction shooting method performed better than the commonly used linearized iterative method.

  • PDF

A STUDY ON SOLUTIONS OF A CLASS OF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS

  • Kim, Yong-Ki
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.156-162
    • /
    • 1998
  • The main objective of this paper is to study the boundedness of solutions of the differential equation $L_{n} {\chi}+F(t,{\chi}) = f(t), n {\geq} 2 $(*) Necessary and sufficient conditions for boundedness of all solutions of (*) will be obtainded. The asymptotic behavior of solutions of (*) will also be studied.

  • PDF

A PREDICTOR-CORRECTOR METHOD FOR FRACTIONAL EVOLUTION EQUATIONS

  • Choi, Hong Won;Choi, Young Ju;Chung, Sang Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1725-1739
    • /
    • 2016
  • Abstract. Numerical solutions for the evolutionary space fractional order differential equations are considered. A predictor corrector method is applied in order to obtain numerical solutions for the equation without solving nonlinear systems iteratively at every time step. Theoretical error estimates are performed and computational results are given to show the theoretical results.

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • This paper shows that the solutions to the perturbed dierential system $$y^{\prime}=f(t,y)+{\int}_{t_o}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded property. To show this property, we impose conditions on the perturbed part ${\int}^{t}_{t_o}g(s,y(s))ds+h(t,y(t),Ty(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).

A CERTAIN EXAMPLE FOR A DE GIORGI CONJECTURE

  • Cho, Sungwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-769
    • /
    • 2014
  • In this paper, we illustrate a counter example for the converse of a certain conjecture proposed by De Giorgi. De Giorgi suggested a series of conjectures, in which a certain integral condition for singularity or degeneracy of an elliptic operator is satisfied, the solutions are continuous. We construct some singular elliptic operators and solutions such that the integral condition does not hold, but the solutions are continuous.

ON THE PROPER QUADRATIC FIRST INTEGRALS IN SYMPLECTIC MANIFOLDS

  • Ryu, Shi-Kyu
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.83-94
    • /
    • 1996
  • Classical mechanics begins with some variants of Newton's laws. Lagrangian mechanics describes motion of a mechanical system in the configuration space which is a differential manifold defined by holonomic constraints. For a conservative system, the equations of motion are derived from the Lagrangian function on Hamilton's variational principle as a system of the second order differential equations. Thus, for conservative systems, Newtonian mechanics is a particular case of Lagrangian mechanics.(omitted)

  • PDF