Integral Representation of C⁻ Solutions of Linear Partial Differential Equations with the Cannonical Form

by Young Jing Suk
Kangwon National University, Chooncheon, Korea

1. Introduction

In this paper Ω will denote an open neighborhood $\{(x,t) \mid |x| < r, |t| < \delta\}$ of the origin of R^2 . We consider the general linear P.D.E with the canonical form

$$L=\partial/\partial t+ib(x,t)\partial/\partial x$$

where b(x, t) is a real valued C^{\sim} function in Ω .

The linear P.D.E L is said to satisfy the condition (P) in if for any $x \in (-r, r)$, the function $t \mapsto b(x, t)$ does not change sign and satisfy condition (P_1) if

- (i) b(x,t)>0 for any $(x,t)\in\Omega$ with $x\neq 0$
- (ii) b(0, t) = 0 for any $t, |t| < \delta$ and satisfy (P_2)

if $b(x,t)\neq 0$ for any $(x,t)\in \Omega$.

We now assume that L satisfies (P_1) or (P_2) . It implies that L satisfies (P). That Lu=f is locally solvable follows immediately from the general criteria for the local solvability of a linear P.D.E due to Nirenberg-Treves [2].

We also assume L satisfies the followings;

$$Lz = \partial z/\partial t + ib(x, t)\partial z/\partial x = 0,$$

Re
$$z_x > 0$$

has a C^{∞} solution in Ω .

We shall represent a C^{∞} solution in an integral form in a neighborhood of the origin. When b(x,t) is real analytic, the same result is established in Treves(3).

2. Integral Representation

Let z=z(x,t) be a C^{∞} solution of

$$Lz = \frac{\partial z}{\partial t} + ib(x, \ell) \frac{\partial z}{\partial x} = 0,$$
Re $z_x > 0$ (1)

in Ω . This is the generalization of $x-it^2/2$ of the Mizohata operator.

We write $z(x,t) = \xi(x,t) + i\eta(x,t)$

where ξ and η are real valued. Thus $\partial \xi/\partial x \neq 0$ in Ω . Therefore we have the right to change variables

$$y = \xi(x, t), \quad s = t \tag{2}$$

in Ω.

Let $z=y+i\phi(y,s)$

where $\phi(y, s) = \eta(x, t)$ real valued, C^{∞} and $\partial y/\partial x \neq 0$ in Ω .

In (y, s) coordinates we have

$$L = \partial/\partial t + ib(x, t)\partial/\partial x$$

$$= \partial/\partial s + \{\partial y/\partial t + ib(x, t)\partial y/\partial x\} \ \partial/\partial y$$

$$= \partial/\partial s + \lambda(y, s) \ \partial/\partial y.$$

But Lz=0, that is,

$$0=L(y+i\phi)=i\phi_s+\lambda(1\pm i\phi_y)$$
.

From this.

$$\lambda = \frac{\partial y}{\partial t} + ib\frac{\partial y}{\partial x} = -i\phi_S/(1+i\phi_Y)$$
.

Since y is a real valued function

$$b(x,t) = -(1+\phi_{y}^{2})^{-1} (\partial y/\partial x)^{-1}\phi_{S}(y,s).$$
(3)

Let the C^{∞} map $\psi:(x,t)\to(y,s)$ be the local coordinate change as defined by (2) and r be the positive numbers such that

$$\{(y,s) \mid |y-k| < \bar{r}, |s| < \bar{\delta}\} \subset \psi(\Omega)$$

where k is a constant number as follows:

We first assume that L satisfies condition (P_1) . We claim ϕ maps $\{(0,t) \mid \{t \mid <\delta\} \}$ into $\{(k,s) \mid |s| < \overline{\delta}\}$ in (y,s) plane. In fact, from the condition (P_1) b(0,t)=0 for any t, $|t| < \delta$. Therefore $\partial/\partial t(\xi+i\eta)=0$ for any t, $|t| < \delta$. So $\xi(0,t)=k$ (a constant as above) for any t, $|t| < \delta$.

From (3), $\phi_s(k, s) = 0$ for any s, $|s| < \bar{\delta}$.

So $\phi(k, s) = \alpha$ (a constant).

Since ψ is a bijective map, the inverse image of $\{(y,s) \mid |y-k| < \bar{r}, |s| < \bar{\delta}\}$ for any fixed $y \neq k$ under ψ is entirely contained in $\{(x,t) \in \Omega \mid x > 0\}$ or $\{(x,t) \in \Omega \mid x < 0\}$.

Note that for any fixed $y \neq k$, $|y-k| < \tilde{r}$, then the map $s \mapsto \phi(y, s)$ is a strictly increasing function in the interval $|s| < \bar{\delta}$.

Note that (i) of condition (P_1) is a special case of four other kinds of signs in $\{(x,t)\in\Omega|x>0\}$ $\cup \{(x,t)\in\Omega|x<0\}$.

For instance, if b(x,t) < 0 for any $(x,t) \in \Omega$, $x \neq 0$, then the map $s \mapsto \phi(y,s)$ is a strictly decreasing function for any fixed $y \neq k$, $|y-k| < \bar{r}$.

Now we subdivide the open rectangles

$$|y-k| < \bar{r}, \quad |s| < \bar{\delta} \tag{4}$$

as a union of $I = \{(k, s) \mid |s| < \bar{\delta}\}$

and a open rectangles $R^+=\{(y,s)\,|\,k< y< k+\bar{r},\,\,|s|<\bar{\delta}\}$

and
$$R^- = \{(y, s) | k - \bar{r} < y < k, |s| < \bar{\delta} \}.$$

We note that the ranges of the map $z=y+i\phi(y,s)$ restricted to the rectangle (4) as follows:

- (i) z maps I to the single point $k+i\alpha$
- (ii) z maps the rectangles R^+ and R^- homeomorphically onto open sets θ_1 and θ_2 of the complex plane C which are entirely contained, respectively, in the strip k < Re $z < k + \bar{r}$ and in the strip $k \bar{r} < Re$ z < k.

We shall denote by A the image of the rectangle (4) under ϕ .

Let now f(x,t) be any C^{∞} function in \mathbb{R}^2 with support contained in

$$V=\psi^{-1}\{(y,s)\mid |y-k|<\bar{r},\ |s|<\bar{\delta}\}.$$

We note the equation

$$Lu = \frac{\partial u}{\partial t} + ib(x, t) \frac{\partial u}{\partial x} = f \text{ is equivalent to}$$

$$(\frac{\partial}{\partial s} + \lambda(y, s) \frac{\partial}{\partial y}) (u(y, s) - \int_{-\tilde{b}}^{s} f(y, \sigma) d\sigma) =$$

$$-\lambda(y, s) \int_{-\tilde{b}}^{s} (\frac{\partial f}{\partial y}) (y, \sigma) d\sigma.$$
(5)

Here f(y, s) = f(x(y, s), t) etc.

For the simplicity we shall set

$$v(y, s) = u(y, s) - \int_{-\delta}^{s} f(y, \sigma) d\sigma,$$

$$g(y, s) = -\lambda(y, s) \int_{-\delta}^{s} (\partial f/\partial y) (y, \sigma) d\sigma.$$

 $\lambda = -i\phi_s/1 + i\phi_s$ vanishes identically on the vertical line segment I (where $\phi_s = 0$).

Now we transform v and g to the set A under the map $z=y+i\phi(y,s)$.

Since g=0 on I and z is a homeomorphism on R^+ and R^- , the transferred function g(z) can be extended by 0 outside of A and is equal to compactly supported function of L^1 class, with a compact support contained in \bar{A} .

The equation (5) becomes

$$(\partial \bar{z}/\partial s + \lambda(y, s)\partial \bar{z}/\partial y) (\partial \bar{v}/\partial \bar{z}) = \hat{g}$$

where v denotes v(y, s) as a function of z.

But since $\lambda(y, s) (\partial z/\partial y) = -\partial z/\partial s$, we have $\partial \bar{z}/\partial s = -\bar{\lambda} (\partial \bar{z}/\partial y)$.

Therefore (5) reads to

$$2i \left(Im \lambda \right)^{-} \left(\partial \bar{z} / \partial y \right) \left(\partial \bar{v} / \partial \bar{z} \right) = \tilde{g}. \tag{6}$$

Moreover, since $\partial \bar{z}/\partial y = 1 - i\phi_y$ and $Im\lambda = -\phi_s/1 + i\phi_y^2$ (6) equivalent to

$$[(-2i/1+i\phi_{\nu})\phi_{s}] \hat{\partial}\bar{v}/\partial\bar{z} = \tilde{g}$$
(7)

r

$$\partial \bar{v}/\partial \bar{z} = i/2[(1+i\phi_y)g/\phi_s]^{\sim} = \left[-1/2\int_{-\bar{b}}^{s} f(y,\sigma)d\sigma\right]^{\sim}.$$
 (8)

(8) is a inhomogeneous Cauchy-Riemann equation whose solution is given by

$$\hat{v} = 1/2\pi i \iint F(\varphi)/z - \varphi \ d\bar{\varphi} \wedge d\varphi$$

where

$$F(z) = i/2[(1+i\phi_y)g/\phi_s]^{\sim}$$

$$= \left[-\frac{1}{2}\int_{-\bar{\delta}}^{s} f(y,\sigma)d\sigma\right]^{\sim}.$$
(9)

To revert (9) to (y, s) coordinates, we set

$$\varphi = y' + i\phi(y', s').$$

Then we have

$$d\phi \wedge d\phi = 2i\phi_{s'}dy' \wedge ds'$$

and hence

$$v(y, s) = 1/2\pi \left[\int_{\mathbb{R}^2} \phi_{s'}(y', s') k(y', s') / [y - y' + i(\phi(y, s) - \phi(y', s'))] dy' / ds' \right]$$
(10)

where

$$k(y, s) = \int_{-\bar{s}}^{s} (\partial f/\partial y) (y, \sigma) d\sigma.$$

Since v(y,s) is the pullback via $(y,s)\mapsto y+i\phi(y,s)$ of \bar{v} which is locally L^1 function, v(y,s) is

well defined and in fact, a C[∞] solution.

Then for any $f \in C_0^{\infty}(V)$ a C^{∞} solution of Lu = f in V is given by the pullback via the map $\phi: (x, t) \longrightarrow (y, s)$ defined in (2) of a C^{∞} solution

$$u(y, s) = -1/2\pi \iint_{R_2} \phi_{s'}(y', s') k(y', s') / [y - y + i(\phi(y, s) - \phi(y', s'))] dy' \wedge ds'$$

$$+ \int_{-\bar{\delta}}^{s} f(y, \sigma) d\sigma$$

where

$$k(y,s) = \int_{-1}^{s} (\partial f/\partial y) (y,\sigma) d\sigma.$$

So far we considered only the case when L satisfies (P_1) . When L satisfies (P_2) , the argument is much simpler, as z is a homeomorphism on the entire rectangle (4) in this case.

References

- 1. Jongsik Kim, Integral representation of solutions of certain linear P.D.Es, J. Korean Math. Soc., Vol. 20, No. 2.
- 2. Nirenberg and Treves, On local solvability of linear P.D.Es, Part 1; Necessary conditions, Comm. Pure & Appl. Math., 23 (1970).
- 3. F. Treves, Integral representation of solutions of a first order linear P.D.Es, Ann. Scu. Norm. Pisa, 4(1976).