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Integral Representation of C~ Solutions of Linear Partial
Differential Equations with the Cannonical Form
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1. Introduction

In this paper £ will denote an open neighborhoed {(z,£)||z|<r, |£|<8} of the origin of RZ
We consider the general linear P.D.E with the cannonical form
L=a/dt-+1ib(x, t)d/oz
where b(z,t) is a real valued C~ function in £

The linear P.D.E L is said to satisfy the condition (P) in if for any z=(—r,r), the function
t—&(x,t) does not change sign and satisfy condition (P;) if

(1) b(x,t)>0 for any (z,t)=fR with z+0

(i) (0, £)=0 for any ¢, |¢{<8 and satisfy (P,)
if 5(x, )0 for any (z,)h.

We now assume that L satisfies (Py) or (Pp). It implies that L satisfies (P). That Lu=f is
locally solvable follows immediately from the general criteria for the local solvability of a linear
P.D.E due to Nirenberg-Treves [2].

We also assume L satisfies the followings;

Lz=0z/ot+ib(x, 2)0z/0x =0,
Re 2z, >0
has a C~ solution in £.
We shall represent a C~ solution in an integral form in a neighborhood of the origin. When

b(z.t) is real analytic, the same result is established in Treves(3].
, y

2. Integral Representation

Let z=z(z,t) be a C~ solution of
Lz=0z/ot+ib(x, £)0z/0x=0,
Re 2,20 )
in . This is the generalization of z—it?/2 of the Mizohata operator.
We write z(x,t)=8(x, t) +ip(z,t)
where & and 7 are real valued. Thus 06/0x+0 in Q. Therefore we have the right to change variables
y=£§(z,t), s=t¢ @
in 2.
Let z=y+ip(y,s)
where ¢(3,s)=n(z,t) real valued, C~ and 9y/0z+0 in 2,
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In (9,s) coordinates we have
L=a/ot+ib(z, t)d/ox
=9/0s+ {0y/ot+1b(z, t)ay/ox} 3/dy
=ad/ds+ A (y,s) 3/0y.
But Lz=0, that is,
0=L (y-+ig) =tp+ 2(1%ig,).
From this, '
A=0y/0t+ibdy /dx=—ips/ (1 +ip,).
Since y is a real valued function
: b(z,t)=—(1+¢,)~" (3y/0z) 'ps(3,5). 3

Let the C~ map ¢:(x, &)~ (y,s) be the local coordinate change as defined by (2) and r be the

positive numbers such that
{3, 9 | ly—kI<F, [s| <8} (D)
where % is a constant number as follows:

We first assume that L satisfies condition (P,). We claim ¢ maps ((0,2){{¢{<(8} into {(&k,$){
[5]<8) in (9,s) plane. In fact, from the condition (P,) 5(0,¢)=0 for any ¢, {¢|<(8. Therefore
a/at(&+ip) =0 for any ¢, |¢{<(8. So £(0,t)=F (a constant as above) for any ¢, |[¢]<74.

From(3), ¢.(k, 5)=0 for any s, |s|<d.

So ¢(k,s)=a (a constant).

Since ¢ is a bijective map, the inverse image of ({(»,9||y~—k|<7, 15| <8} for any fixed y+k
under ¢ is entirely contained in {(z,8)=2{z>0} or {(z,t)=8[x<0}.

Note that for any fixed y+#k%, |y—#&|<7, then the map si>¢(y,s) is a strictly increasing function
in the interval |s|<C8.

Note that (i) of condition (P;) is a special case of four other kinds of signs in {(z,t)=8{z>>0}
U {(z, ) eR]2<0}.

For instance, if &(z,t)<0 for any (z,f)&R, x#0, then the map s—¢(y,s) is a strictly decrea-
sing function for any fixed y=#k, |y—k|<7.

Now we subdivide the open rectangles

ly—kI<r, |s1< @
as a union of I={(k,s)||s| <3}
and a open rectangles R*={(y,s) !k<y<k+f, Is| <6}
and R ={(3,5) k—r<y<k, |s]<0}.

We note that the ranges of the map z=y-+i¢(y,s) restricted to the rectangle (4) as follows:

(1) =z maps I to the single point 2+ia

(ii) = maps the rectangles R* and R- homeomorphically onto open sets 6, and 6, of the complex
plane C which are entirely contained, respectively, in the strip #<{Re z<k+7 and in the strip
k—7<Re z<k.

We shall denote by A the image of the rectangle (4) under ¢.

Let now f(z,t) be any C~ function in R? with support contained in

V=¢{(3,9 | ly—k|<F, |s]<3}.
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We note the equation
Lu=0u/ot+1ib(z, t)0u/dx=f is equivalent to

@05+ 203, 98/39) (w(3,9)— [ £(3,0)do) =
~23,9) [ @/39) (3,0 do. ®)

Here f(y,8)=f(z(y,s),t) etc.
For the simplicity we shall set

o3, 9 =u(r.9~ [ f03,0)ds,
8, 9==203,9 [ @F/o9) (3,0)do.

A=—i¢s/1-+i¢, vanishes identically on the vertical line segment I (where ¢,=0).

Now we transform v and g to the set A under the map z=y+i¢(y,s).

Since g=0 on I and z is a homeomorphism on R* and R-, the transfered function g(2) can be
extended by 0 outside of A and is equal to compactly supported function of L' class, with a compact
support contained in A.

The equation (5) becomes

(0%/0s-+ A(y, $)0z/dy) (00/02) — &
where v denotes v(y,s) as a function of z.
But since A(y,s) (0z/8y) = —0z/9s, we have 0z/95=——2(02/dy).
Therefore (5) reads to

2t (Im2)~ (62/dy) (00/0z) =4. 6
Moreover, since 0z/0y=1—i¢, and Imid=—¢,/1+i$,* (6) equivalent to
((—2i/1+ip,) $;) 00/08=& @
or
90/08=1i/2((1+id,)g/$.)™= [—1/2 f O, a)do] . ®

(8) is a inhomogeneous Cauchy-Riemann equation whose solution is given by

v=1/21i [ F(p) /z—p dp/\dp
where F(2)=i/2[(1+id,)g/¢s)~
=[=172[" s.0)a0] . (9
To revert (9) to (y,s) coordinates, we set
p=y"+i¢(y',s').
Then we have

dp/N\dp=2id,-dy’ \ds’

and hence
o0y, 9=1/2x [ b (DR, /=y +iG (3,9 —$(5, NI NI (10)

where E(y,5)= f " (@f/39) (3, 0)do.

Since v(y,s) is the pullback via (y, s)i—y+id(y,s) of & which is locally L! function, v(y,s) is
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well defined and in fact, a C~ solution.
Then for any f=Cy;~(V) a C~ solution of Lu=f in V is given by the pullback via the map
¢ (x,8)—(y,s) defined in (2) of a C~ solution

wG, )=~/ ] 6 (7, IR, ) /=3 i (3, 9 905, ) A NS’
+[*, 10,000

where

¥0,9= [ 0/39) (v, 0)do.

So far we considered only the case when L satiesfies (P,). When L satisfies (P,), the argument
is much simpler, as z is a homeomorphism on the entire rectangle (4) in this case.
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