J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 5(1998), no. 2, 156-162

A STUDY ON SOLUTIONS OF A CLASS OF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS

YONG KI KIM

ABSTRACT. The main objective of this paper is to study the boundedness of solutions of the differential equation

$$L_n x + F(t, x) = f(t) , \quad n \ge 2 \qquad (*)$$

Necessary and sufficient conditions for boundedness of all solutions of (*) will be obtainedd. The asymptotic behavior of solutions of (*) will also be studied.

1. Introduction

Define the n-th order differential operator L_n by

$$L_n = \frac{1}{h_n(t)} \frac{d}{dt} \frac{1}{h_{n-1}(t)} \frac{d}{dt} \cdots \frac{1}{h_1(t)} \frac{d}{dt} \frac{d}{h_0(t)}, \quad n \ge 2$$

where $h_i(t), 0 \le i \le n$, are positive continuous functions on $[a, \infty)$.

Consider the differential equation

$$L_n x + F(t, x) = f(t) \qquad (*)$$

where F(t, x) and f(t) are continuous functions on $[a, \infty) \times R$ and $[a, \infty)$ respectively. We introduce the quasi-derivatives of a function x(t) by

$$D^{0}(x; h_{0})(t) = \frac{x(t)}{h_{0}(t)},$$

$$D^{i}(x; h_{0}, \dots, h_{i})(t) = \frac{1}{h_{i}(t)} \frac{d}{dt} D^{i-1}(x; h_{0}, \dots, h_{i-1})(t), \quad i \leq i \leq n.$$

Received by the editors Oct. 1, 1998 and, in revised form Nov. 23, 1998.

1991 Mathematics Subject Classification. Primary 34L20.

Key words and phrases. quasi-derivative, positive continuous function.

This study was supported by the Research Fund of Dongguk University in 1998.

Then the operator L_n can be rewritten as

$$L_n = D^n(\cdot, h_0, \cdots, h_n).$$

The domain $\mathcal{D}(L_n)$ of L_n is defined to be the set of all continuous functions $x: [T_x, \infty) \to R$ such that $D^i(x; h_0, \dots, h_i)(t), 0 \le i \le n$, exist and are continuous on $[T_x, \infty)$. By a solution of Eq.(*) we mean a function $x \in \mathcal{D}(L_n)$ which satisfies (*) at every point of $[T_x, \infty)$.

2. Preliminaries

Let $g_i(t)$, $1 \leq i \leq N$, be continuous functions on $[a, \infty)$. Generalizing upon notation introduced by Willett[6], we put for $t, s \in [a, \infty)$

$$I_0 = 1 \; , \quad I_i(t,s;g_1,\cdots,g_i) = \int_s^t g_1(r) I_{i-1}(r,s;g_2,\cdots,g_i) dr \; , \quad 1 \leq i \leq N$$

The following identities hold:

$$I_{i}(t, s; g_{1}, \dots, g_{i}) = (-1)^{i} I_{i}(s, t; g_{i}, \dots, g_{1})$$

$$I_{i}(t, s; g_{1}, \dots, g_{i}) = \int_{s}^{t} g_{i}(r) I_{i-1}(t, r; g_{1}, \dots, g_{i-1}) dr$$

$$(1)$$

Lemma 2.1. Suppose that $g_i(t), 1 \leq i \leq N$, are positive on $[a, \infty)$. If $I_N(t, a; g_1, \dots, g_N)$ is bounded on $[a, \infty)$, then so are the functions $I_i(t, a; g_1, \dots, g_i)$ for $1 \leq i \leq N-1$.

Proof. Let b > a be fixed. Then, by (1), we have for $t \ge b$

$$I_{N}(t, a; g_{1}, \dots, g_{N}) = \int_{a}^{t} g_{N}(r) I_{N-1}(t, r; g_{1}, \dots, g_{N-1}) dr$$

$$\geq \int_{a}^{b} g_{N}(r) I_{N-1}(t, r; g_{1}, \dots, g_{N-1}) dr$$

$$\geq I_{N-1}(t, b, g_{1}, \dots, g_{N-1}) \int_{a}^{b} g_{N}(r) dr$$

which implies that $I_{N-1}(t,b;g_1,\dots,g_{N-1})$ is bounded on $[b,\infty)$. Hence $I_{N-1}(t,a;g_1,\dots,g_{N-1})$ is bounded on $[a,\infty)$. The boundedness of $I_i(t,a;g_1,\dots,g_i)$ for $1 \le i \le N-2$ follows by induction.

Lemma 2.2. If $x \in \mathcal{D}(L_n)$, then we have for $t, s \in [T_x, \infty)$

$$D^{0}(x; h_{0})(t) = \sum_{i=0}^{n-1} D^{i}(x; h_{0}, \dots, h_{i})(s) I_{i}(t, s; h_{1}, \dots, h_{i})$$

$$+ \int_{s}^{t} I_{n-1}(t, r; h_{1}, \dots, h_{n-1}) h_{n}(r) D^{n}(x; h_{0}, \dots, h_{n})(r) dr$$
(2)

This lemma is a generalization of Taylor's formula with remainder. The last integral in (2) may be rewritten as

$$I_n(t,s;h_1,\cdots,h_{n-1},h_nD^n(x;h_0,\cdots,h_n)) = \int_s^t h_1(r_1) \int_s^{r_1} h_2(r_2) \int_s^{r_2} \cdots \int_s^{r_{n-1}} h_{n-1}(r_{n-1}) \int_s^{r_{n-1}} h_n(r_n)D^n(x;h_0,\cdots,h_n)(r_n)dr_ndr_{n-1}\cdots dr_2dr_1$$

3. Main Results

Theorem 3.1. Suppose that there is a function $\phi \in \mathcal{D}(L_n)$ satisfying $L_n\phi(t) = f(t)$ on $[a, \infty)$ and such that $D^0(\phi; h_0)(t)$ is bounded on $[a, \infty)$. Suppose moreover that there are a number $\gamma \in (0, 1]$ and a positive continuous function q(t) on $[a, \infty)$ such that

$$|F(t,x)| \le q(t)|x|^{\gamma} \quad for \ (t,x) \in [a,\infty) \times R$$
 (3)

If

$$\lim_{t \to \infty} I_n(t, a; h_1, \cdots, h_{n-1}, h_n h_0^{\gamma} q) < \infty$$
(4)

then, for every solution x(t) of (*), $D^0(x; h_0)(t)$ is bounded.

Proof. We observe that condition (3) ensures that every soultion of (*) can be continued to $t = \infty$. Let x(t) be an arbitrary solution of (*) defined on $[\alpha, \infty)$. From Lemma 2.2 we have

$$D^{0}(x - \phi; h_{0})(t) = \sum_{i=0}^{n-1} D^{i}(x - \phi; h_{0}, \dots, h_{i})(\alpha) I_{i}(t, \alpha; h_{1}, \dots, h_{i})$$
$$- I_{n}(t, \alpha; h_{1}, \dots, h_{n-1}, h_{n}F(\cdot, x)) \quad \text{for } t \geq \alpha.$$

Condition (4) implies that $I_i(t, \alpha; h_1, \dots, h_i), 1 \leq i \leq n-1$, are bounded on $[\alpha, \infty)$. On the other hand, using (3) we find

$$|I_n(t,\alpha;h_1,\cdots,h_{n-1},h_nF(\cdot,x))| \leq I_n(t,\alpha;h_1,\cdots,h_{n-1},h_nh_0^{\gamma}q|D^0(x;h_0)|^{\gamma}), t \geq \alpha.$$

Taking these facts into account, we see that the function $u(t) = \max_{\alpha \le s \le t} |D^0(x; h_0)|$ (s)| satisfies the following inequality for $t \ge \alpha$;

$$u(t) \leq c + I_{n}(t, \alpha; h_{1}, \cdots, h_{n-1}, h_{n}h_{0}^{\gamma}q|D^{0}(x; p_{0})|^{\gamma})$$

$$= c + \int_{\alpha}^{t} h_{1}(s_{1}) \int_{\alpha}^{s_{1}} h_{2}(s_{2}) \int_{\alpha}^{s_{2}} \cdots \int_{\alpha}^{s_{n-2}} h_{n-1}(s_{n-1})$$

$$\int_{\alpha}^{s_{n-1}} h_{n}(s_{n})h_{0}^{\gamma}(s_{n})q(s_{n})|D^{0}(x; h_{0})(s_{n})|^{\gamma}ds_{n} \cdots ds_{2}ds_{1}$$

$$\leq c + \int_{\alpha}^{t} u^{\gamma}(s_{1})h_{1}(s_{1}) \int_{\alpha}^{s_{1}} h_{2}(s_{2}) \int_{\alpha}^{s_{2}} \cdots \int_{\alpha}^{s_{n-2}} h_{n-1}(s_{n-1})$$

$$\int_{\alpha}^{s_{n-1}} h_{n}(s_{n})h_{0}^{\gamma}(s_{n})q(s_{n})ds_{n} \cdots ds_{2}ds_{1}$$

$$= c + \int_{\alpha}^{t} u^{\gamma}(s_{1})h_{1}(s_{1})I_{n-1}(s_{1}, \alpha; h_{2}, \cdots, h_{n-1}, h_{n}h_{0}^{\gamma}q)ds_{1},$$

where c is a positive constant. Thus we have

$$u(t) \le c + \int_{\alpha}^{t} v(s)u^{\gamma}(s)ds , \quad t \ge \alpha$$
 (5)

where $v(s) = h_1(c)I_{n-1}(s,\alpha;h_2,\cdots,h_{n-1},h_nh_0^{\gamma}q)$. Since $\gamma \leq 1$ and $\int_{\alpha}^t v(s)ds = I_n(t,\alpha;h_1,\cdots,h_{n-1},h_nh_0^{\gamma}q)$ is bounded by (4), we are able to apply Bihari's lemma[2] to (5) to conclude that u(t) is bounded on $[\alpha,\infty)$. If follows that $D^0(x;h_0)(t)$ is bounded, and the proof is complete.

Theorem 3.2. Suppose that, for every $t \ge a$, $F(t,x) \le 0$ for x > 0 and F(t,x) is nonincreasing in x. Suppose that every solution of (*) can be continued to $t = \infty$. If $D^0(x; h_0)(t)$ is bounded for every solution x(t) of (*), then

$$\lim_{t\to\infty}I_n(t,a;h_1,\cdots,h_{n-1},h_n|F(\cdot,ch_0)|)<\infty$$

for any constant c > 0.

Proof. There is a constant M > 0 such that $|D^0(\phi; h_0)(t)| \leq M$ for $t \geq a$. Let c > 0 be given arbitrarily and let x(t) be a solution of (*) satisfying the initial conditions

$$D^{0}(x - \phi, h_{0})(a) \ge M + c,$$

$$D^{i}(x - \phi, h_{0}, \dots, h_{i})(a) > 0, \quad \text{for } 1 \le i \le n - 1$$
(6)

By Lemma 2.2 we have

$$D^{0}(x-\phi,h_{0})(t) = \sum_{i=0}^{n-1} D^{i}(x-\phi;h_{0},\cdots,h_{i})(a)I_{i}(t,a;h_{1},\cdots,h_{i}) + I_{n}(t,a;h_{1},\cdots,h_{n-1},-h_{n}F(\cdot,x)), \quad t \geq a$$
 (7)

from which we see that $D^0(x-\phi;h_0)(t)>0$ and $D^1(x-\phi;h_0,h_1)(t)>0$ whenever x(t)>0. Therefore $D^0(x-\phi;h_0)(t)$ is positive and increasing on $[a,\infty)$, and so, with the use of the first condition of (6), we have

$$D^{0}(x, h_{0})(t) \geq D^{0}(\phi, h_{0})(t) + D^{0}(x - \phi; h_{0})(a)$$

$$\geq -M + M + c = c, \quad t \geq a$$
 (8)

Since $D^0(x - \phi; h_0)(t)$ is bounded by hypothesis, it follows from (7), (8) and the second condition of (6) that

$$\lim_{t\to\infty}I_n(t,a;h_1,\cdots,h_{n-1},h_n|F(\cdot,ch_0)|)<\infty.$$

This completes the proof.

Theorem 3.3. Suppose that there is a function $\phi \in \mathcal{D}(L_n)$ such that $L_n\phi(t) = f(t)$ on $[a, \infty)$ and $D^0(\phi; h_0)(t)$ tends to a finite limit as $t \to \infty$. If in addition to (4) $\lim_{t\to\infty} I_n(t, a; h_n h_0^{\gamma} q \cdot h_{n-1}, \cdots, h_1) < \infty$ then, for every solution x(t) of (*), $D^0(x; h_0)(t)$ tends to a finite limit at $t \to \infty$. In particular, for every oscillatory solution x(t) of (*), $D^0(x; h_0)(t)$ tends to zero as $t \to \infty$.

Proof. Let x(t) be any solution of (*) defined on $[\alpha, \infty)$. It suffices to show that $D^0(x-\phi;h_0)(t)$ has a finite limit as $t\to\infty$. Suppose the contrary. Then, there are two constants ξ, η such that

$$\lim_{t \to \infty} \inf D^0(x - \phi; h_0)(t) < \xi < \eta < \lim_{t \to \infty} \sup D^0(x - \phi; h_0)(t)$$
 (9)

Let $T \geq \alpha$ be so large that

$$cI_n(t,T;h_nh_0^{\gamma}q\cdot h_{n-1},\cdots,h_1)<\frac{\eta-\xi}{2}$$
(10)

for $t \geq T$, where $c = \sup_{t \geq T} |D^0(x; h_0)(t)|^{\gamma}$. Choose $A_0 < B_0 < A_1 < B_1$ so that $T < A_0, D^0(x-\phi; h_0)(A_0) < \xi < \eta < D^0(x-\phi; h_0)(B_0)$ and $D^0(x-\phi; h_0)(A_1) < \xi < \eta$

 $\eta < D^0(x - \phi; h_0)(B_1)$. Let $[s_1, s_2]$ be the smallest interval containing B_0 such that $D^0(x - \phi; h_0)(s_1) = D^0(x - \phi; h_0)(s_2) = \xi$ and $\max\{D^0(x - \phi; h_0)(t); t \in [s_1, s_2]\} = D^0(x - \phi; h_0)(s') > \eta$. Clearly, $T < s_1 < s' < s_2$. Let $s_2 \le t_1 \le t_2 \le \cdots \le t_{n-1}$ be such that

$$D^{i}(x - \phi; h_{0}, \dots, h_{i})(t_{i}) = 0, \quad 1 \le i \le n - 1$$
 (11)

such t_i exist, because $D^i(x-\phi;h_0,\dots,h_i), 1 \leq i \leq n-1$, are oscillatory by (9). On repeated integration of (*), we have in view of (11)

$$D^{1}(x-\phi;h_{0},h_{1})(t) = (-1)^{n} \int_{t}^{t_{1}} h_{2}(r_{2}) \int_{r_{2}}^{t_{2}} \cdots \int_{r_{n-2}}^{t_{n-2}} h_{n-1}(r_{n-1})$$

$$\int_{r_{n-1}}^{t_{n-1}} h_{n}(r_{n}) F(r_{n},x(r_{n})) dr_{n} \cdots dr_{2}$$
(12)

Multiplying both sides of (12) by $h_1(t)$ and integrating from s_1 to s', we obtain

$$\eta - \xi < \int_{s_{1}}^{s'} h_{1}(r_{1}) \int_{r_{1}}^{t_{1}} h_{2}(r_{2}) \int_{r_{2}}^{t_{2}} \cdots \int_{r_{n-2}}^{t_{n-2}} h_{n-1}(r_{n-1})
\int_{r_{n-1}}^{t_{n-1}} h_{n}(r_{n}) q(r_{n}) h_{0}^{\gamma}(r_{n}) |D^{0}(x; h_{0})(r_{n})|^{\gamma} dr_{n} \cdots dr_{1}
\leq \int_{s_{1}}^{t_{n-1}} h_{1}(r_{1}) \int_{r_{1}}^{t_{n-1}} h_{2}(r_{2}) \int_{r_{2}}^{t_{n-1}} \cdots \int_{r_{n-2}}^{t_{n-1}} h_{n-1}(r_{n-1})
\int_{r_{n-1}}^{t_{n-1}} h_{n}(r_{n}) q(r_{n}) h_{0}^{\gamma}(r_{n}) |D^{0}(x; h_{0})(r_{n})|^{\gamma} dr_{n} \cdots dr_{1}$$

The last integral equals, in view of (1),

$$\int_{s_1}^{t_{n-1}} I_{n-1}(r, s_1; h_{n-1}, \dots, h_1) h_n(r) q(r) h_0^{\gamma}(r) |D^0(x; h_0)(r)|^{\gamma} dr$$

$$= I_n(t_{n-1}, s_1; h_n h_0^{\gamma} q |D^0(x; h_0)|^{\gamma}, h_{n-1}, \dots, h_1),$$

so that, making use of (10), we conclude that

$$\eta - \xi < c_n I_n(t_{n-1}, s_1; h_n h_0^{\gamma} q, h_{n-1}, \cdots, h_1) < \frac{\eta - \xi}{2}$$

a contradiction. Therefore $D^0(x - \phi; h_0)(t)$ must approach a finite limit as $t \to \infty$. This completes the proof.

References

- 1. G. W. Johnson, A bounded nonoscillatory solution of an even order linear differential equation, J. Differential Equations 15 (1974), 172-177.
- 2. I. Bihari, A Generalization of a lemma of Bellan and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar. 7 (1956), 81-94.
- 3. CH. G. Philos and V. A. Staikos, Boundedness and Oscillation of Solutions of Differential Equations with Deviating Argument, Tech. rep. Univ. Ioannina No. 37, 1980.
- 4. B. Singh and T. Kusano, On asymptotic limits of nonoscillations in functional equations with retarded arguments, Hiroshima Math. J. 10 (1980), 557-565.
- 5. B. Singh and T. Kusano, Asymptotic behavior of oscillatory solutions of a differential equation with deviating arguments, J. Math. Anal. Appl. 83 (1981), 395-407.
- D. Willett, Asymptotic behavior of disconjugate n-th order differential equation, Canad. J. Math. 23 (1971), 293-314.

DEPARTMENT OF MATHEMATICS EDUCATION, DONGGUK UNIVERSITY, SEOUL 100-715, KOREA.