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A STUDY ON SOLUTIONS OF A CLASS OF HIGHER
ORDER ORDINARY DIFFERENTIAL EQUATIONS

Yone K1 Kim

ABSTRACT. The main objective of this paper is to study the boundedness of solutions
of the differential equation

Loz + F(tz)=f(), n>2 ()

Necessary and sufficient conditions for boundedness of all solutions of (x) will be
obtainded. The asymptotic behavior of solutions of (*) will also be studied.

1. Introduction

Define the n-th order differential operator L,, by

1 d .
Lo ld 1 da 1d.

where h;(t),0 < i < n, are positive continuous functions on [a, o).
Consider the differential equation

Loz + F(t,2) = f(t) (%)

where F'(t,z) and f(t) are continuous functions on [a, 00) x R and [a, co) respectively.
We introduce the quasi-derivatives of a function z(t) by

D%(a; ho)(t) = o
Di(m; ho, cee ,hz)(t) = hzl(t) %Di_l(m; ho, e ,hi_l)(t) s 1< <n.
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Then the operator L, can be rewritten as
Ln = Dn('v h’O; R} hn)

The domain D(L,) of L, is defined to be the set of all continuous functions z :
[T, 00) — R such that D(z; hg,- - ,h;)(t),0 < i < n, exist and are continuous on
[Ty, 00). By a solution of Eq.(*) we mean a function ¢ € D(L,,) which satisties (%)
at every point of [Ty, 00).

2. Preliminaries

Let gi(t), 1 < i < N, be continuous functions on [a,00). Generalizing upon
notation introduced by Willett[6], we put for ¢, s € [a, 00)

t
In=1, It s;91, - ,9) =/ 91(r)Li—1(r, 8592, ygi)dr, 1<i<N
S
The following identities hold:

Li(t,s;01,- ,9i) = (=1)'Li(s,t; gi, -+ , 1)

t
L(t, 8,91, 1 9s) =/ gi(r)Lia(t,m591,- -+ 5 gim1)dr (1)
S
Lemma 2.1. Suppose that g;(t),1 < i < N, are positive on [a,00). If IN(t, a; 91,
.-+ ,gn) s bounded on [a,00), then so are the functions I;(t,a;g1, -+ ,9:) for 1 <
1< N-1.

Proof. Let b > a be fixed. Then, by (1), we have for t > b
t
In(t 0591, ,9N) =/ gn(r)In-1(t, 75 91,7+, gn—1)dr
a
b
2 / gN(T)IN—l(ta Tig91,° 7gN—1)dr
a

b
2 IN—l(t>b;gl,"' ’gN—l)/ gN(r)dT
a

which implies that Iy _1(t,b;91, - ,gn—1) is bounded on [b, co0). Hence In_1(¢, a; 91,
-++ ,gN—1) is bounded on [a, 00). The boundedness of I;(t,a; 91, - ,9:;) for 1 <i <
N — 2 follows by induction. 0
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Lemma 2.2. Ifz € D(L,), then we have for t,s € [T}, o)

n—1
D°(z; ho)(t) = Y D*(x; ho, -+, ha)(8)Lit, 8 ha, -+, hy)
i=0
t
+ / In—l(t) T hla T hn—l)hn(r)Dn(‘T; hO) Tty hn)(’l")d'l" (2)
s

This lemma is a generalization of Taylor’s formula with remainder. The last
integral in (2) may be rewritten as

t T1 T2
Ln(t,5:h1, - s hnt, hnD" (@3 hoy - - b)) = / ha(rs) / ha(ra) /
S S S

Trn—1 Tn—-1
/ hn——l("'n—l)/ hn(rn)D™(z; hoy -+, hp ) (Pp)drndrn_q - - - dradry
S 8

3. Main Results

Theorem 3.1. Suppose that there is a function ¢ € D(Ly) satisfying Lo¢(t) = f(t)
on [a,00) and such that D°(¢; ho)(t) is bounded on [a,0). Suppose moreover that
there are a number v € (0,1] and a positive continuous function ¢(t) on [a, 00) such
that

[F(t,z)| < q(t)|z|”  for (t,2) € [a,00) X R @)

If
tl_i}m L.(t,a;hy, -+ s hn_1, hnh{q) < oo (4)

then, for every solution x(t) of (x), D°(z; ho)(t) is bounded.

Proof. We observe that condition (3) ensures that every soultion of (%) can be
continued to ¢ = co. Let z(t) be an arbitrary solution of () defined on [a, c0).
From Lemma 2.2 we have

n—1

D%z — ¢; ho)(t) = > _ D'z — @i ho, -+ , ha) (@) Li(t, @5 b,y -+, Bi)
1=0
— L(t,a; by, -+ yhp_1, hnF(,z)) fort> o



A STUDY ON SOLUTIONS OF A CLASS OF HIGHER ORDER --- 159

Condition (4) implies that I;(t,o; hy, -+ ,h;),1 < i < n—1, are bounded on [a, 00).
On the other hand, using (3) we find

|In(t,05; hl) e 7hn—17 hnF(') m))| S In(tya; hl) e ’hn—li hnth|Do(33; hO)l’y) 3 t Z Q.

Taking these facts into account, we see that the function u(t) = max,<s<: |D°(z; ho)
(s)] satisfies the following inequality for ¢t > a;

u(t) S c+ In(ty «; hl) Ty hn—-h hnthIDo(waPO)l’y)

—c+ /a ha(sy) /a " ha(sa) /a /a " h1(5n1)

Sn—1
/ hn(8n)hg (52)(5)| D° (25 ho)(85)|"dsn - - - dsads:

[ 2

t 81 S2 Sp—2
<ct / W (s)ha(s1) / ha(s2) / / Fn1(n1)
(23 [0 4 [s 3 [e 3

/ hn(sn)hg (3n)q(sn)dsy - - - dsadsy

23

t
=c+ / u7(81)h1(81)1 —-l(slaa; h2, Tt hn—la hnhgq)dslv

s
where c is a positive constant. Thus we have

u(t) <c+ /t v(s)u?(s)ds, t2>« (5)

[03
where v(s) = h1(c)In—1(5,@; ha,- -+ , hn—1,hnhdq). Since v < 1 and [ v(s)ds =
L(t,a; h1,- -+ , hn_1, hnh{q) is bounded by (4), we are able to apply Bihari’s lemmal[2]
to (5) to conclude that u(t) is bounded on [a,00). If follows that D%(z;ho)(t) is
bounded, and the proof is complete. 0

Theorem 3.2. Suppose that, for every t > a, F(t,z) <0 for z > 0 and F(t,z) is
nonincreasing in x. Suppose that every solution of (x) can be continued to t = co.
If D°%(x; ho)(t) is bounded for every solution z(t) of (x), then

tl—l)rgo In(ta a; hl; ) hn—la h"nIF(a ChO)I) < oo
for any constant ¢ > 0.

Proof. There is a constant M > 0 such that |D%(¢; ho)(t)] < M fort > a. Let ¢ > 0
be given arbitrarily and let z(¢) be a solution of (*) satisfying the initial conditions
D%z — ¢,ho)(a) > M +c,
D*(z — ¢,ho,--- ,hi){a) >0, for1<i<n-—1 (6)
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By Lemma, 2.2 we have

n—1

D%z - ¢,ho)(t) = Y D'(z — i ho, -+ , ki) (@)]i(t, as ha, -+ , hy)
=0
+ In(t,a; b1, - s hn_1, =R F(,2)), t>a (7)

from which we see that D%(z — ¢; ho)(t) > 0 and D'(z — ¢; ho, h1)(t) > 0 whenever
z(t) > 0. Therefore D%(z — ¢; ho)(t) is positive and increasing on [a, c0), and so,
with the use of the first condition of (6), we have

D(z, ho)(t) = D°(¢, ho)(t) + D°(x — ¢; ho)(a)
>-M+M+c=c, t>a (8)

Since D%(z — ¢; ho)(t) is bounded by hypothesis, it follows from (7), (8) and the
second condition of (6) that

Jim Lo(t, 0 k1, o1, Bal F( cho)]) < oo.

This completes the proof.

Theorem 3.3. Suppose that there is a function ¢ € D(Ly) such that L,¢(t) = f(t)
on [a,00) and D°(¢; ho)(t) tends to a finite limit as t — oo. If in addition to
(4) im0 In(t, @; RBnhiq - Bn_1,-- , h1) < oo then, for every solution z(t) of (*),
DO(z; ho)(t) tends to a finite limit at t — oo. In particular, for every oscillatory
solution z(t) of (x), D%(z; ho)(t) tends to zero as t — oo.

Proof. Let z(t) be any solution of (*) defined on [, 00). It suffices to show that
D°(z — ¢; ho)(t) has a finite limit as ¢ — co. Suppose the contrary. Then, there are
two constants £, 77 such that

Jim inf D%(z — ¢; ho)(t) < € <7 < lim sup D°(z — ¢; ho)(2) 9

Let T' > o be so large that

eIt T hnhdq - B, -+ 1) < Q;—§ (10)
for t > T, where ¢ = sup,>r |D°(@; ho)(t)|”. Choose Ao < By < Ay < Bj so that

T < Ap, DO($—¢; ho)(Ao) <é<n< DO(.’L‘—(f); ho)(Bo) and D0($—¢; ho)(Al) <&<
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n < D%(z — ¢; ho)(B1). Let [s1, s3] be the smallest interval containing By such that
D%z — ¢; ho)(s1) = D°(z — ¢; ho)(s2) = € and max{D°(z — ¢; ho)(t); t € [s1, 5]} =
D%z — ¢ ho)(s') > n. Clearly, T < 51 < s’ < s3. Let 5o <t3 <ty <+ <tp_q be
such that

DYz — ¢;hoy--- ,hi)(t) =0, 1<i<n—1 (11)

such t; exist, because D*(z — @; ho,--- ,h;),1 <4 < n — 1, are oscillatory by (9).
On repeated integration of (*), we have in view of (11)

D'(z — ¢; ho, ha)(t) = (—1)" / ha(rs) / / " b1 (rac)
/ T () P () - o (12)

Multiplying both sides of (12) by h4(t) and integrating from s; to s’, we obtain

s’ t1 ta tn—2
n=e< [ haeo [ [T [T bt
S1 1 T2 Tn—2

[ b)) 720 DO ) 1) -

n-—-1

tn-1 th—1 tn-1 tn—1
S / h]_(’l"l) hz('f‘z) / te / hn—l(rn—l)
S1 T T2 Tn-2

/ a ha(rn)a(rn)hg (ra)l D% (z; ho) (rn)[drn - - - dry

n—1

The last integral equals, in view of (1),

/ "~ In1(ry 15 hn1, - 5 ha)ha(r)a(r)hg (r)[D° (25 ho) (r)dr

S1

= In(tn—1, 51; hnhdq|D°(z; ho)| ", Bty -+ - , ha),

so that, making use of (10), we conclude that

n— 6 < cnIn(tn—la S1; hnhg‘b ha-1,--- ,hl) < 77_;_6_
a contradiction. Therefore D%(z — ¢; ho)(t) must approach a finite limit as t — oo.

This completes the proof. O
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