• Title/Summary/Keyword: diameter of a graph

Search Result 78, Processing Time 0.025 seconds

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

Using Tabu Search for L(2,1)-coloring Problem of Graphs with Diameter 2 (Tabu Search를 이용한 지름이 2인 그래프에 대한 L(2,1)-coloring 문제 해결)

  • Kim, SoJeong;Kim, ChanSoo;Han, KeunHee
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.345-351
    • /
    • 2022
  • For simple undirected graph G=(V,E), L(2,1)-coloring of G is a nonnegative real-valued function f : V → [0,1,…,k] such that whenever vertices x and y are adjacent in G then |f(x)-f(y)|≥ 2 and whenever the distance between x and y is 2, |f(x)-f(y)|≥ 1. For a given L(2,1)-coloring c of graph G, the c-span is λ(c) = max{|c(v)-c(v)||u,v∈V}. L(2,1)-coloring number λ(G) = min{λ(c)} where the minimum is taken over all L(2,1)-coloring c of graph G. In this paper, based on Harary's Theorem, we use Tabu Search to figure out the existence of Hamiltonian Path in a complementary graph and confirmed that if λ(G) is equal to n(=|V|).

An Alternative Perspective of Near-rings of Polynomials and Power series

  • Shokuhifar, Fatemeh;Hashemi, Ebrahim;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.437-453
    • /
    • 2022
  • Unlike for polynomial rings, the notion of multiplication for the near-ring of polynomials is the substitution operation. This leads to somewhat surprising results. Let S be an abelian left near-ring with identity. The relation ~ on S defined by letting a ~ b if and only if annS(a) = annS(b), is an equivalence relation. The compressed zero-divisor graph 𝚪E(S) of S is the undirected graph whose vertices are the equivalence classes induced by ~ on S other than [0]S and [1]S, in which two distinct vertices [a]S and [b]S are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials R0[x] and the near-ring of the power series R0[[x]] over a commutative ring R. Also, we give a complete characterization of the diameter of these two graphs. It is natural to try to find the relationship between diam(𝚪E(R0[x])) and diam(𝚪E(R0[[x]])). As a corollary, it is shown that for a reduced ring R, diam(𝚪E(R)) ≤ diam(𝚪E(R0[x])) ≤ diam(𝚪E(R0[[x]])).

HAMILTONIAN PROPERTIES OF ENHANCED HONEYCOMB NETWORKS

  • M. SOMASUNDARI;A. RAJKUMAR;F. SIMON RAJ;A. GEORGE
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.761-775
    • /
    • 2024
  • A cycle in a graph G that contains all of its vertices is said to be the Hamiltonian cycle of that graph. A Hamiltonian graph is one that has a Hamiltonian cycle. This article discusses how to create a new network from an existing one, such as the Enhanced Honeycomb Network EHC(n), which is created by adding six new edges to each layer of the Honeycomb Network HC(n). Enhanced honeycomb networks have 9n2 + 3n - 6 edges and 6n2 vertices. For every perfect sub-Honeycombe topology, this new network features six edge disjoint Hamiltonian cycles, which is an advantage over Honeycomb. Its diameter is (2n + 1), which is nearly 50% lesser than that of the Honeycomb network. Using 3-bit grey code, we demonstrated that the Enhanced Honeycomb Network EHC(n) is Hamiltonian.

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

Petersen-Torus(PT) Network for Multicomputing System (멀티컴퓨팅 시스템을 위한 피터슨-토러스(PT) 네트워크)

  • Seo, Jung-Hyun;Lee, Hyeong-Ok;Jang, Moon-Suk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.263-272
    • /
    • 2008
  • We propose and analyze a new interconnection network, called petersen-torus(PT) network based on well-known petersen graph. PT network has a smaller diameter and a smaller network cost than honeycomb torus with same number of nodes. In this paper, we propose optimal routing algorithm and hamiltonian cycle algorithm. We derive diameter, network cost and bisection width.

THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN A NONCOMMUTATIVE RING

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1647-1659
    • /
    • 2008
  • Let R be a ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. First, we investigate some connected conditions of the zero-divisor graph $\Gamma(R)$ of a noncommutative ring R as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diameter of $\Gamma(R)$, denoted by diam($\Gamma(R)$) (resp. girth of $\Gamma(R)$, denoted by g($\Gamma(R)$)) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3, in addition, if R is local, then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (3) if R is unit-regular, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3. Next, we investigate the graph automorphisms group of $\Gamma(Mat_2(\mathbb{Z}_p))$ where $Mat_2(\mathbb{Z}_p)$ is the ring of 2 by 2 matrices over the galois field $\mathbb{Z}_p$ (p is any prime).

EXTENDED ZERO-DIVISOR GRAPHS OF IDEALIZATIONS

  • Bennis, Driss;Mikram, Jilali;Taraza, Fouad
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • Let R be a commutative ring with zero-divisors Z(R). The extended zero-divisor graph of R, denoted by $\bar{\Gamma}(R)$, is the (simple) graph with vertices $Z(R)^*=Z(R){\backslash}\{0\}$, the set of nonzero zero-divisors of R, where two distinct nonzero zero-divisors x and y are adjacent whenever there exist two non-negative integers n and m such that $x^ny^m=0$ with $x^n{\neq}0$ and $y^m{\neq}0$. In this paper, we consider the extended zero-divisor graphs of idealizations $R{\ltimes}M$ (where M is an R-module). At first, we distinguish when $\bar{\Gamma}(R{\ltimes}M)$ and the classical zero-divisor graph ${\Gamma}(R{\ltimes}M)$ coincide. Various examples in this context are given. Among other things, the diameter and the girth of $\bar{\Gamma}(R{\ltimes}M)$ are also studied.