An Alternative Perspective of Near-rings of Polynomials and Power series

Fatemeh Shokuhifar, Ebrahim Hashemi* and Abdollah Alhevaz
Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood 316-3619995161, Iran
e-mail: shokuhi.135@gmail.com,
eb_hashemi@yahoo.com or eb_hashemi@shahroodut.ac.ir
and a.alhevaz@gmail.com or a.alhevaz@shahroodut.ac.ir

Abstract. Unlike for polynomial rings, the notion of multiplication for the near-ring of polynomials is the substitution operation. This leads to somewhat surprising results. Let S be an abelian left near-ring with identity. The relation \sim on S defined by letting $a \sim b$ if and only if $a n n_{S}(a)=a n n_{S}(b)$, is an equivalence relation. The compressed zero-divisor graph $\Gamma_{E}(S)$ of S is the undirected graph whose vertices are the equivalence classes induced by \sim on S other than $[0]_{S}$ and $[1]_{S}$, in which two distinct vertices $[a]_{S}$ and $[b]_{S}$ are adjacent if and only if $a b=0$ or $b a=0$. In this paper, we are interested in studying the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials $R_{0}[x]$ and the near-ring of the power series $R_{0}[[x]]$ over a commutative ring R. Also, we give a complete characterization of the diameter of these two graphs. It is natural to try to find the relationship between $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)$ and $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)$. As a corollary, it is shown that for a reduced ring $R, \operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)$.

1. Introduction

Throughout this paper, all rings are associative rings with identity and all near-rings are abelian left near-rings with unity. Recall that a non-empty set S with two binary operations "+" and "." is an abelian left near-ring if $(S,+)$ forms an abelian group, (S, \cdot) forms a semi-group, and $a \cdot(b+c)=a \cdot b+a \cdot c$ for each $a, b, c \in S$. Clearly, every ring is a near-ring. The zero-symmetric part of a near-ring S is the set of all elements $a \in S$ such that $0 \cdot a=0$ and it is denoted

[^0]by S_{0}. Moreover, a near-ring N is called zero-symmetric if $S=S_{0}$. Let S be a near-ring and $A \subseteq S$. Then $\operatorname{ann}_{S}(A)=\ell . \operatorname{ann}_{S}(A) \cup r . a n n_{S}(A)$, where
$$
\ell^{\ell} \operatorname{ann}_{S}(A)=\{s \in S \mid s a=0 \text { for each } a \in A\}
$$
and $\operatorname{r.ann}_{S}(A)=\{s \in S \mid$ as $=0$ for each $a \in A\}$. Also, we write $Z_{\ell}(S), Z_{r}(S)$ and $Z(S)$ for the set of all left zero-divisors of S, the set of all right zero-divisors and the set $Z_{\ell}(S) \cup Z_{r}(S)$, respectively. Moreover, we use $\langle A\rangle$ to denote the ideal generated by A. For basic definitions and comprehensive discussion on near-rings, we refer the reader to [21].

Let G be a graph. Recall that G is connected if there is a path between any two distinct vertices of G. Also, the diameter of G is

$$
\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \text { are vertices of } G\}
$$

where $d(a, b)$ is the length of the shortest path from a to b. Moreover, the girth of $G, \operatorname{gr}(G)$, is the length of the shortest cycle of the graph, and $\operatorname{gr}(G)=\infty$ if G has no cycles.

The concept of a zero-divisor graph of a commutative ring R was introduced by Beck in [5]. However, he let all elements of R be vertices of the graph and was mainly interested in coloring. Inspired by his study, Anderson and Livingston [3], redefined and studied the (undirected) zero-divisor graph $\Gamma(R)$, whose vertices are the non-zero zero-divisors of a ring such that distinct vertices x and y are adjacent if and only if $x y=0$. According to [3, Theorems 2.3 and 2.4$], \Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \leq 3$, and $\operatorname{gr}(\Gamma(R)) \leq 4$ if $\Gamma(R)$ contains a cycle. Redmond [22] extended the concept of the zero-divisor graph to noncommutative rings. Several papers are devoted to studying the relationship between the zero-divisor graph and algebraic properties of rings (cf. [3, 15, 17, 18, 20, 22]).

In [8], the authors generalized this concept to a zero-symmetric near-ring S. They defined an undirected graph $\Gamma(S)$ with vertices in the set $Z^{*}(S)=Z(S) \backslash\{0\}$ and such that for distinct vertices a and b there is an edge connecting them if and only if $a b=0$ or $b a=0$. Following [8, Theorem 2.2], the zero-divisor graph of zero-symmetric near-ring S is connected and $\operatorname{diam}(\Gamma(S)) \leq 3$.

For a ring or near-ring S, define $a \sim b$ if and only if $a n n_{S}(a)=a n n_{S}(b)$. As in [20], one can see that \sim is an equivalence relation on S. For any $a \in S$, let $[a]_{S}=\{b \in S \mid a \sim b\}$ (for short we can use $[a]$ instead of $[a]_{S}$). For instance, it is clear that $[0]_{S}=\{0\}$ and $[1]_{S}=S \backslash Z(S)$, and that $[a]_{S} \subseteq Z(S) \backslash\{0\}$ for each $a \in S \backslash\left([0]_{S} \cup[1]_{S}\right)$.

As in [23], $\Gamma_{E}(S)$ will denote the (undirected) graph, called the compressed zero-divisor graph of S, whose vertices are the elements of $S_{E} \backslash\left\{[0]_{S},[1]_{S}\right\}$ such that distinct vertices $[a]_{S}$ and $[b]_{S}$ are adjacent if and only if $a b=0$ or $b a=0$. Note that if a and b are distinct adjacent vertices in $\Gamma(S)$, then $[a]_{S}$ and $[b]_{S}$ are adjacent in $\Gamma_{E}(S)$ if and only if $[a]_{S} \neq[b]_{S}$. Clearly, $\operatorname{diam}\left(\Gamma_{E}(S)\right) \leq \operatorname{diam}(\Gamma(S))$. For a commutative ring R, Anderson and LaGrange [2], showed that $\operatorname{gr}\left(\Gamma_{E}(R)\right)=3$ if
$\Gamma_{E}(R)$ contains a cycle, and determined the structure of $\Gamma_{E}(R)$ when it is a cyclic and the monoid R_{E} when $\Gamma_{E}(R)$ is a star graph.

Let R be a ring. Since $R[x]$ is an abelian near-ring under addition and substitution, it is natural to investigate the near-ring of polynomials $(R[x],+, \circ)$. The binary operation of substitution, denoted by "○", of one polynomial into another is both natural and important in the theory of polynomials. We adopt the convention that for polynomials $f=\sum_{i=0}^{m} a_{i} x^{i}$ and $g \in R[x]$,

$$
g \circ f=\sum_{i=0}^{m} a_{i} g^{i}
$$

For example, $\left(a_{0}+a_{1} x\right) \circ x^{2}=\left(a_{0}+a_{1} x\right)^{2}=a_{0}^{2}+\left(a_{0} a_{1}+a_{1} a_{0}\right) x+a_{1}^{2} x^{2}$. However, the operation \circ, left distributes but does not right distribute over addition. Thus $(R[x],+, \circ)$ forms a left near-ring but not a ring. We use $R[x]$ to denote the left near-ring $(R[x],+, \circ)$ with coefficients from R and

$$
R_{0}[x]=\{f \in R[x] \mid f \text { has zero constant term }\}
$$

is the zero-symmetric left near-ring of polynomials with coefficients in R. Also, for each $f=\sum_{i=0}^{m} a_{i} x^{i}$ and $g=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$, we write

$$
f g=\sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k} .
$$

The aim of this paper is the study of the compressed zero-divisor graphs of zero-symmetric near-ring of polynomials $R_{0}[x]$ and near-ring of formal power series $R_{0}[[x]]$ over a commutative ring R. For a reduced ring R, we prove that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=i$ if and only if $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=i$ for each $i=1,2,3$. Moreover, we show that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$ if and only if $\left|\Gamma_{E}(R)\right| \leq 2$, $\operatorname{Nil}(R)^{2}=0, Z(R)=a n n_{R}(a)$ for some $a \in R$, and $a n n_{R}(c)=\operatorname{Nil}(R)$ for each $c \in Z(R) \backslash \operatorname{Nil}(R)$. Also, it is proved that $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$. In addition, we are interested in characterizing the diameter of graph $\Gamma_{E}\left(R_{0}[[x]]\right)$. In fact, The diameter of the graphs $\Gamma_{E}(R[[x]])$ and $\Gamma_{E}\left(R_{0}[[x]]\right)$ are the same when R is a reduced ring. Also, we try to relate $\operatorname{diam}\left(\Gamma_{E}(R)\right)$ to $\Gamma_{E}\left(R_{0}[[x]]\right)$. As a corollary, it is shown that

$$
\operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)
$$

where R is reduced. Moreover, we give a complete characterization for the possible diameters of $\Gamma_{E}\left(R_{0}[[x]]\right)$, where R is a non-reduced Noetherian ring.

2. On the Diameter of the Compressed Zero-divisor Graph of $R_{0}[x]$

Let R be a commutative ring. Following [1, Theorem 2.7], we have

$$
2 \leq \operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right) \leq 3
$$

Hence $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq 3$, since $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)$.
Proposition 2.1. Let R be a commutative ring with $Z(R) \neq 0$. Then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \geq 1$.
Proof. First suppose that R is a reduced ring and $0 \neq a \in Z(R)$. Thus $a b=0$ for some non-zero $b \neq a$ of R. If $[a x]=[b x]$, then $a x \in a n n_{R_{0}[x]}(a x)$, and so $a^{2}=0$, which is a contradiction. Hence $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \geq 1$. Now assume R is a non-reduced ring. Then there exists $0 \neq a \in R$ such that $a^{2}=0$. Thus ax, $a x+x^{2} \in Z\left(R_{0}[x]\right)$. Also, $x^{2} \in a n n_{R_{0}[x]}(a x)$ but $x^{2} \notin a n n_{R_{0}[x]}\left(a x+x^{2}\right)$, which implies that $[a x] \neq\left[a x+x^{2}\right]$, and so $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \geq 1$.

For any $f \in R[x]$, we denote by C_{f} the set of all coefficients of f. Also, the set of all non-zero coefficients of f is denoted by $C_{f}^{*}=C_{f} \backslash\{0\}$.

To characterize the diameter of $\Gamma_{E}\left(R_{0}[x]\right)$, where R is a reduced ring, we need the following lemma.
Lemma 2.2. Let R be a reduced ring. Then
(1) [4, Lemma 1] For each $f, g \in R[x], f g=0$ if and only if $a_{i} b_{j}=0$ for each $a_{i} \in C_{f}$ and $b_{j} \in C_{g}$.
(2) [7, Lemma 3.4] For each $f, g \in R_{0}[x], f \circ g=0$ if and only if $a_{i} b_{j}=0$ for each $a_{i} \in C_{f}$ and $b_{j} \in C_{g}$.
Let R be a reduced ring and f, g be elements of the ring $R[x]$. Then $f g=0$ if and only if $a_{i} b_{j}=0$ for each $a_{i} \in C_{f}$ and $b_{j} \in C_{g}$, by Lemma 2.2. Hence $f x \circ g x=0$, by Lemma 2.2. On the other hand, $Z\left(R_{0}[x]\right) \subseteq Z(R[x])$, by Lemma 2.2. Thus $d([f],[g])=t$ in $\Gamma_{E}(R[x])$, if and only if $d([f x],[g x])=t$ in $\Gamma_{E}\left(R_{0}[x]\right)$. Therefore we can conclude the next result.

Proposition 2.3. Let R be a reduced ring. Then
(1) $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=1$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$.
(2) $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=2$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$.
(3) $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=3$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$.

Corollary 2.4. Let R be a reduced commutative ring. Then $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$.
Proof. $\quad \Rightarrow$) Since $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$, then we have $\operatorname{diam}(\Gamma(R[x]))=3$, by [1, Proposition 2.10]. Thus $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=3$, by [12, Theorem 3.3]. Hence $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$, by Proposition 2.3.
(\Leftarrow) It is clear, since $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right) \leq 3$.

Now, we investigate the diameter of $\Gamma_{E}\left(R_{0}[x]\right)$, when R is not reduced. For this purpose, we bring the following lemmas which are used extensively in the sequel.

Lemma 2.5. ([1, Lemma 2.4]) Let R be a commutative ring and $f=\sum_{i=1}^{n} a_{i} x^{i}$, $g=\sum_{j=1}^{m} b_{j} x^{j}$ be non-zero elements of $R_{0}[x]$ with $f \circ g=0$. Then
(1) $r f=0$ for some non-zero $r \in R$.
(2) f is nilpotent or $s g=0$ for some non-zero $s \in R$.

Lemma 2.6. ([1, Proposition 2.5]) Let R be a non-reduced commutative ring. Then

$$
\begin{aligned}
Z_{r}\left(R_{0}[x]\right) & =Z_{\ell}\left(R_{0}[x]\right) \cup \\
& \left\{\sum_{i=1}^{n} a_{i} x^{i} \in R_{0}[x] \mid \operatorname{ann}_{R}\left(a_{1}\right) \cap N i l(R) \neq 0 \text { and } a_{i} \in R \text { for each } i \geq 2\right\},
\end{aligned}
$$

where $Z_{\ell}\left(R_{0}[x]\right)=\left\{f \in R_{0}[x] \mid r f=0\right.$, for some $\left.0 \neq r \in R\right\}$.
Lemma 2.7. Let R be a non-reduced commutative ring and for each $a, b \in Z(R)$, $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$. Then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq 2$. Also, if there exists $c \in \operatorname{Nil}(R)$ such that $c^{k}=0 \neq c^{k-1}$ for some $k \geq 3$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$.
Proof. By [1, Theorem 2.9], we have $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=2$.
Now assume that $c^{k}=0$ but $c^{k-1} \neq 0$ for some $c \in \operatorname{Nil}(R)$ and $k \geq 3$. Since $c^{2} x \circ x^{k-1}=0$, then $x^{k-1} \in Z\left(R_{0}[x]\right)$. Also, $c x \circ x^{k-1} \neq 0 \neq x^{k-1} \circ c x$. Since $x^{k} \in \operatorname{ann}_{R_{0}[x]}(c x)$ but $x^{k} \notin \operatorname{ann}_{R_{0}[x]}\left(x^{k-1}\right)$, then $[c x] \neq\left[x^{k-1}\right]$. It follows that $d\left(c x, x^{k-1}\right) \geq 2$, and thus $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$.

Following [14], a ring R is called semicommutative if $a b=0$ implies $a R b=0$ for each $a, b \in R$.
Remark 2.8. Let R be a commutative ring. Then R is a semicommutative ring, and so $\operatorname{Nil}(R[x])=\operatorname{Nil}(R)[x]$, by [16]. On the other hand, $\operatorname{Nil}\left(R_{0}[x]\right)=$ $\operatorname{Nil}(R)_{0}[x]$, by [11, Corollary 2]. Therefore $\operatorname{Nil}\left(R_{0}[x]\right)=\operatorname{Nil}(R[x]) x$. We use this fact freely in the sequel.
For any $f \in R_{0}[x]$, we use $\operatorname{deg}(f)$ to denote the degree of f.
Theorem 2.9. Let R be a non-reduced commutative ring. Then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=$ 1 if and only if $\left|\Gamma_{E}(R)\right| \leq 2, N i l(R)^{2}=0, Z(R)=a n n_{R}(a)$ for some $a \in R$, and $\operatorname{ann}_{R}(c)=\operatorname{Nil}(R)$ for each $c \in Z(R) \backslash \operatorname{Nil}(R)$.
Proof. (\Rightarrow) Let $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$. Since R is a non-reduced ring, there exists $0 \neq a \in R$ such that $a^{2}=0$. Let $b \in Z(R)$. If $[a x]=[b x]$, then $a x \in a n n_{R_{0}[x]}(b x)$, since $a^{2}=0$. Thus $a x \circ b x=0$, and so $a b=0$. Also, if $[a x] \neq[b x]$, then $a x \circ b x=0$, by hypothesis. Hence $a b=0$. Therefore $Z(R)=a n n_{R}(a)$. It follows that for each $b \in \operatorname{Nil}(R), b^{2}=0$, by Lemma 2.7. Now assume that b, c are distinct elements of $N i l(R)$. If $[b x]=[c x]$, then $c x \in a n n_{R_{0}[x]}(b x)$, and so $b c=0$. If $[b x] \neq[c x]$, then $0=b c x=b x \circ c x$, by assumption. Hence $\operatorname{Nil}(R)^{2}=0$.

Now suppose that $c \in Z(R) \backslash \operatorname{Nil}(R)$ and $d \in \operatorname{ann}_{R}(c)$. Thus $\left[x^{2}\right]=[c x]$, since $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$. Hence $d x \in a n n_{R_{0}[x]}(c x)=a n n_{R_{0}[x]}\left(x^{2}\right)$, which implies that $d^{2}=0$, and so $\underset{\operatorname{ann}}{R}(c) \subseteq \operatorname{Nil}(R)$. Also, by a similar way as used above, we have
$Z(R)=a n n_{R}(b)$ for each $b \in \operatorname{Nil}(R)$, since $b^{2}=0$. Hence $\operatorname{Nil}(R) \subseteq a n n_{R}(c)$. Therefore $\operatorname{Nil}(R)=a n n_{R}(c)$.

Let $c \in Z(R)$. If c is nilpotent, then $a n n_{R}(c)=Z(R)$, and if $c \notin \operatorname{Nil}(R)$, then $a n n_{R}(c)=\operatorname{Nil}(R)$. Hence there exist at most two different vertices $[a]_{R}$ and $[b]_{R}$ in $\Gamma_{E}(R)$, where $a \in \operatorname{Nil}(R)$ and $b \notin \operatorname{Nil}(R)$. This shows that $\left|\Gamma_{E}(R)\right| \leq 2$.
(\Leftarrow) We claim that for each $c \in \operatorname{Nil}(R)$, $\operatorname{ann}_{R_{0}[x]}(c x)=Z\left(R_{0}[x]\right)$ and
 Now assume $d \in Z(R) \backslash \operatorname{Nil}(R)$. Hence $\operatorname{ann}_{R}(d)=\operatorname{Nil}(R)$, and thus $c d=0$. It means that $\operatorname{ann}_{R}(c)=Z(R)$. Now suppose that $g=\sum_{j=1}^{m} b_{j} x^{j} \in Z\left(R_{0}[x]\right)$. Thus $c x \circ g=0$, since $N i l(R)^{2}=0$ and $b_{1} \in Z(R)$, by Lemma 2.6. Hence $\operatorname{ann}_{R_{0}[x]}(c x)=Z\left(R_{0}[x]\right)$. On the other hand, since R is non-reduced, $x^{2} \in Z\left(R_{0}[x]\right)$. Also, $x^{2} \in \operatorname{ann}_{R_{0}[x]}(c x)$ but $x^{2} \notin \operatorname{ann}_{R_{0}[x]}\left(x^{2}\right)$. Hence we have at least two vertices $[c x]$ and $\left[x^{2}\right]$ in $\Gamma_{E}\left(R_{0}[x]\right)$. Clearly, r.ann $n_{R_{0}[x]}\left(x^{2}\right)=0$. On the other hand, if $g \in \ell . a n n_{R_{0}[x]}\left(x^{2}\right)$, then $g^{2}=0$, and so $g \in \operatorname{Nil}(R)_{0}[x]$. Since $\operatorname{Nil}(R)^{2}=0$, then $\operatorname{Nil}(R)_{0}[x] \subseteq \ell . \operatorname{ann}_{R_{0}[x]}\left(x^{2}\right)$, and thus

$$
a n n_{R_{0}[x]}\left(x^{2}\right)=\operatorname{Nil}(R)_{0}[x]=\operatorname{Nil}\left(R_{0}[x]\right)
$$

Now let f be a non-zero element of $Z\left(R_{0}[x]\right)$. We can write $f=f_{1}+f_{2}+f_{3}$ such that $C_{f_{1}}^{*} \subseteq \operatorname{Nil}(R), C_{f_{2}}^{*} \subseteq Z(R) \backslash \operatorname{Nil}(R)$, and $C_{f_{3}}^{*} \subseteq R \backslash Z(R)$. We consider the following cases:

Case 1. Let $f=f_{1}=\sum_{i=1}^{n} a_{i} x^{i}$ and $g=\sum_{j=1}^{m} b_{j} x^{j} \in Z\left(R_{0}[x]\right)$. Since $C_{f_{1}}^{*} \subseteq \operatorname{Nil}(R)$, then $\operatorname{ann}_{R}\left(a_{i}\right)=Z(R)$ for each $1 \leq i \leq n$. Also, by Lemma 2.6, $b_{1} \in Z(R)$. Hence $f \circ g=0$, since $\operatorname{Nil}(R)^{2}=0$. Therefore $a n n_{R_{0}[x]}(f)=Z\left(R_{0}[x]\right)$, and so $[f]=\left[f_{1}\right]=[c x]$.

Case 2. Let $f=f_{2}=\sum_{i=1}^{n} a_{i} x^{i}$. Then $\operatorname{ann}_{R}\left(a_{i}\right)=\operatorname{Nil}(R)$ for each $1 \leq i \leq n$. Suppose that $g=\sum_{j=1}^{m} b_{j} x^{j} \in \operatorname{r.ann_{R_{0}}[x]}(f)$. It means that

$$
f \circ g=b_{1} f+b_{2} f^{2}+\cdots+b_{m} f^{m}=0 .
$$

Thus $b_{m} a_{n}^{m}=0$, since it is the leading coefficient of $f \circ g=0$. Also, from $a_{n} \notin \operatorname{Nil}(R)$ yields $a_{n}^{m} \notin \operatorname{Nil}(R)$, and so $b_{m} \in \operatorname{ann}_{R_{0}[x]}\left(a_{n}^{m}\right)=\operatorname{Nil}(R)$. Hence $b_{m} \in \operatorname{Nil}(R)$, which implies that $b_{m} f=0$, since $\operatorname{ann}_{R}\left(a_{i}\right)=\operatorname{Nil}(R)$. Thus $f \circ g=b_{1} f+b_{2} f^{2}+\cdots+b_{m-1} f^{m-1}=0$. Continuing this process, we see that $b_{j} \in \operatorname{Nil}(R)$ for each $1 \leq j \leq m-1$. Hence g is a nilpotent element of $R_{0}[x]$, and so $r . a n n_{R_{0}[x]}(f) \subseteq \operatorname{Nil}(R)_{0}[x]$. Now assume that $g \in \ell . a n n_{R_{0}[x]}(f)$. Thus $g \circ f=a_{1} g+a_{2} g^{2}+\cdots+a_{n} g^{n}=0$, and so $a_{n} b_{m}^{n}=0$. This shows that $b_{m}^{n} \in \operatorname{ann}_{R}\left(a_{n}\right)=\operatorname{Nil}(R)$, which implies that $b_{m} \in \operatorname{Nil}(R)$. Hence

$$
g \circ f=a_{1} g_{1}+a_{2} g_{1}^{2}+\cdots+a_{n} g_{1}^{n}=0
$$

where $g_{1}=\sum_{j=1}^{m-1} b_{j} x^{j}$. By repeating this argument, we can conclude that $b_{j} \in \operatorname{Nil}(R)$ for each $1 \leq j \leq m-1$. Therefore $\ell . \operatorname{ann}_{R_{0}[x]}(f) \subseteq \operatorname{Nil}(R)_{0}[x]$. Since $a n n_{R}\left(a_{i}\right)=N i l(R)$ for each $1 \leq i \leq n$, then $g \circ f=0=f \circ g$ for each $g \in \operatorname{Nil}(R)_{0}[x]$. Hence $\operatorname{ann}_{R_{0}[x]}(f)=\operatorname{Nil}(R)_{0}[x]=\operatorname{Nil}\left(R_{0}[x]\right)$. Therefore $[f]=\left[f_{2}\right]=\left[x^{2}\right]$.

Case 3. Let $f=f_{3}=\sum_{i=1}^{n} a_{i} x^{i}$. Then $a_{1}=0$, by Lemma 2.6. Since $r f \neq 0$ for each $0 \neq r \in R$, then r.ann $n_{R_{0}[x]}(f)=0$, by Lemma 2.5. Also, if $g \in \ell . a n n_{R_{0}[x]}(f)$, then g is nilpotent, by Lemma 2.5. Since $\operatorname{Nil}(R)^{2}=0$, then

$$
h \circ f=a_{2} h^{2}+\cdots+a_{n} h^{n}=0
$$

for each $h \in \operatorname{Nil}(R)_{0}[x]$. Therefore

$$
\operatorname{ann}_{R_{0}[x]}(f)=\ell \cdot a n n_{R_{0}[x]}(f)=\operatorname{Nil}(R)_{0}[x]=\operatorname{Nil}\left(R_{0}[x]\right) .
$$

Hence $[f]=\left[f_{3}\right]=\left[x^{2}\right]$.
Case 4. Let $f=f_{1}+f_{2}$, where $0 \neq f_{1}=\sum_{i=1}^{n} a_{i} x^{i}$ and $0 \neq f_{2}=\sum_{s=1}^{t} c_{s} x^{s}$. Suppose that $g \in \ell . a n n_{R_{0}[x]}(f)$. Then $r g=0$ for some $0 \neq r \in R$, by Lemma 2.5. Thus $C_{g}^{*} \subseteq Z(R)$. Since $\operatorname{ann}_{R}\left(a_{i}\right)=Z(R)$ for each $a_{i} \in C_{f_{1}}^{*}$, we have $g \circ f=c_{1} g+c_{2} g^{2}+\cdots+c_{t} g^{t}=g \circ f_{2}=0$, which implies that $g \in \ell . a n n_{R_{0}[x]}\left(f_{2}\right)$. Thus $\ell . a n n_{R_{0}[x]}(f) \subseteq \operatorname{Nil}\left(R_{0}[x]\right)$, by Case 2 . Now, assume

$$
g=\sum_{j=1}^{m} b_{j} x^{j} \in r \cdot a n n_{R_{0}[x]}(f) .
$$

Since f is not nilpotent, then $C_{g}^{*} \subseteq Z(R)$, by Lemma 2.5. Hence

$$
0=f \circ g=b_{1} f+b_{2} f^{2}+\cdots+b_{m} f^{m}=b_{1} f_{2}+b_{2} f_{2}^{2}+\cdots+b_{m} f_{2}^{m}=f_{2} \circ g
$$

which implies that $g \in \operatorname{r.ann} n_{R_{0}[x]}\left(f_{2}\right)$, and so $g \in \operatorname{Nil}\left(R_{0}[x]\right)$, by Case 2. Since $\operatorname{ann}_{R}\left(a_{i}\right)=Z(R)$ for each $a_{i} \in C_{f_{1}}^{*}$ and $\operatorname{ann}_{R}\left(c_{s}\right)=\operatorname{Nil}(R)$ for each $c_{s} \in C_{f_{2}}^{*}$, then $\ell . a n n_{R_{0}[x]}(f)=\operatorname{r.ann}_{R_{0}[x]}(f)=\operatorname{Nil}\left(R_{0}[x]\right)$. Hence $\operatorname{ann}_{R_{0}[x]}(f)=\operatorname{Nil}\left(R_{0}[x]\right)$. Therefore $[f]=\left[f_{1}+f_{2}\right]=\left[x^{2}\right]$.

Case 5. Let $f=f_{1}+f_{3}$, where $0 \neq f_{1}=\sum_{i=1}^{n} a_{i} x^{i}$ and $0 \neq f_{3}=\sum_{s=1}^{t} c_{s} x^{s}$. Then $a_{1}+c_{1}$ is the coefficient of x in f. By Lemma 2.6, we have $a_{1}+c_{1} \in Z(R)$. Thus $c_{1}=0$, since $a_{1} \in Z(R)$ and $Z(R)=a n n_{R}(a)$ for some $a \in R$. Hence $\operatorname{deg}\left(f_{3}\right) \geq 2$. Similar to Case 3, we can conclude that r.ann $n_{R_{0}[x]}(f)=0$. On the other hand, if $g \circ f=0$ for some $g \in R_{0}[x]$, then g is nilpotent, by Lemma 2.5. Hence $\ell . a n n_{R_{0}[x]}(f) \subseteq \operatorname{Nil}\left(R_{0}[x]\right)$. Since $\operatorname{Nil}(R)^{2}=0$ and $a n n_{R}\left(a_{i}\right)=Z(R)$ for each $a_{i} \in C_{f_{1}}^{*}$, then $g \circ f=0$ for each $g \in \operatorname{Nil}\left(R_{0}[x]\right)$. Therefore we have $\operatorname{ann}_{R_{0}[x]}(f)=$. ann $_{R_{0}[x]}(f)=\operatorname{Nil}\left(R_{0}[x]\right)$. Thus $[f]=\left[f_{1}+f_{3}\right]=\left[x^{2}\right]$.

Case 6. Let $f=f_{2}+f_{3}$, where $f_{i} \neq 0$ for each $i \in\{2,3\}$. Since $\operatorname{deg}\left(f_{3}\right) \geq 2$ and $\operatorname{ann}_{R}\left(a_{i}\right)=\operatorname{Nil}(R)$ for each $a_{i} \in C_{f_{2}}^{*}$, then by a similar way as used in Case 5 one can show that $\operatorname{ann}_{R_{0}[x]}(f)=\ell \cdot \operatorname{ann}_{R_{0}[x]}(f)=\operatorname{Nil}\left(R_{0}[x]\right)$. Hence $[f]=\left[x^{2}\right]$.

Case 7. Let $f=f_{1}+f_{2}+f_{3}$, where $f_{i} \neq 0$ for each $i \in\{1,2,3\}$. Since $C_{f_{3}}^{*} \subseteq R \backslash Z(R)$, then $r \cdot a n n_{R_{0}[x]}(f)=0$ and $\ell \cdot a n n_{R_{0}[x]}(f) \subseteq \operatorname{Nil}\left(R_{0}[x]\right)$, by Lemma 2.5. Hence $\operatorname{ann}_{R_{0}[x]}(f)=\operatorname{Nil}\left(R_{0}[x]\right)$, and so $[f]=\left[f_{1}+f_{2}+f_{3}\right]=\left[x^{2}\right]$.

Therefore $\left|\Gamma_{E}\left(R_{0}[x]\right)\right|=2$, and thus diam $\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$.
Corollary 2.10. Let R be a non-reduced commutative ring with $Z(R) \neq 0$. If $Z(R)^{2}=0$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$.

From [1, Theorems 2.7 and 2.9], we immediately deduce the following result.
Proposition 2.11. Let R be a non-reduced commutative ring. Then there exist $a, b \in Z(R)$ with ann $n_{R}(\{a, b\}) \cap \operatorname{Nil}(R)=0$ if and only if $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$

Lemma 2.12. Let R be a commutative ring and $a, b \in R$. If

$$
a n n_{R}(\{a, b\}) \cap \operatorname{Nil}(R)=0
$$

then ann $n_{R}\left(\left\{a^{k}, b^{s}\right\}\right) \cap \operatorname{Nil}(R)=0$ for each positive integer k, s with $a^{k} \neq 0 \neq b^{s}$.
Proof. Let $a^{k} \neq 0$ for some positive integer k. On the contrary, assume that and $0 \neq t \in \operatorname{ann}_{R}\left(\left\{a^{k}, b\right\}\right) \cap \operatorname{Nil}(R)$. Then $t a^{k}=0=t b$. Hence there exists $1 \leq r \leq k-1$ such that $t a^{r} \neq 0$ but $t a^{r+1}=0$. Thus $a^{r} \in a n n_{R}(\{a, b\}) \cap N i l(R)$, which is a contradiction. Now suppose $b^{s} \neq 0$ for some positive integer s. Put $a^{\prime}=a^{k} \neq 0$. Hence $a n n_{R}\left(\left\{a^{\prime}, b\right\}\right) \cap \operatorname{Nil}(R)=0$, and so by a similar way as used above, $a n n_{R}\left(\left\{a^{\prime}, b^{s}\right\}\right) \cap \operatorname{Nil}(R)=0$, as desired.

Theorem 2.13. Let R be a non-reduced commutative ring. Then $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=$ 3 if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$.
Proof. (\Rightarrow) Let $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$. Then there exist $a, b \in Z(R)$, such that $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R)=0$, by Proposition 2.11. Notice that if a or $b \in \operatorname{Nil}(R)$ and $a b=0$, then $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$, which is a contradiction. Hence we consider the following cases:

Case 1. Let $a, b \notin \operatorname{Nil}(R)$. Since $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R)=0$, then either there exists $c \in \operatorname{Nil}(R)$ such that $c a=0$ but $c b \neq 0$ or for each $c \in \operatorname{Nil}(R), c a \neq 0 \neq c b$.

First assume $c a=0$ but $c b \neq 0$ for some $c \in \operatorname{Nil}(R)$. There exists a positive integer k such that $c^{k}=0$. Hence $a x+x^{k}, b x \in Z\left(R_{0}[x]\right)$. Since

$$
c x \in a n n_{R_{0}[x]}\left(a x+x^{k}\right)
$$

but $c x \notin a n n_{R_{0}[x]}(b x)$, then $\left[a x+x^{k}\right] \neq[b x]$. Also, $b x \circ\left(a x+x^{k}\right) \neq 0 \neq\left(a x+x^{k}\right) \circ b x$. Since for each $0 \neq r \in R, r\left(a x+x^{k}\right) \neq 0$, then

$$
a n n_{R_{0}[x]}\left(a x+x^{k}\right)=\ell . a n n_{R_{0}[x]}\left(a x+x^{k}\right) \subseteq \operatorname{Nil}\left(R_{0}[x]\right),
$$

by Lemma 2.5. Suppose that $g=\sum_{i=s}^{n} c_{i} x^{i} \in a n n_{R_{0}[x]}\left(a x+x^{k}\right) \cap a n n_{R_{0}[x]}(b x)$ and $c_{s} \neq 0$. Then $g \circ\left(a x+x^{k}\right)=0$ and either $g \circ b x=0$ or $b x \circ g=0$. Hence $c_{i} \in \operatorname{Nil}(R)$ for each i and $a c_{s}=0$. If $g \circ b x=0$, then $b c_{s}=0$, which implies that $c_{s} \in a n n_{R}(\{a, b\}) \cap \operatorname{Nil}(R)$, a contradiction. If $0=b x \circ g=c_{s} b^{s} x^{s}+\cdots+c_{n} b^{n} x^{n}$, then $c_{s} b^{s}=0$. Since $b \notin \operatorname{Nil}(R)$, then $b^{s} \neq 0$. Hence $c_{s} \in \operatorname{ann}_{R}\left(\left\{a, b^{s}\right\}\right) \cap \operatorname{Nil}(R)$, which is a contradiction by Lemma 2.12. Thus $b x$ and $a x+x^{k}$ have not common non-zero annihilator, and so $d\left(\left[a x+x^{k}\right],[b x]\right) \geq 3$. Therefore $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$.

Now assume for each $c^{\prime} \in \operatorname{Nil}(R), c^{\prime} a \neq 0 \neq c^{\prime} b$. Since R is not reduced, there exists $c \in R$ such that $c^{2}=0$. Thus $c b \neq 0$ and $c b x+x^{2} \in Z\left(R_{0}[x]\right)$. Hence $\left[c b x+x^{2}\right] \neq[a x]$, since $c x \in a n n_{R_{0}[x]}\left(c b x+x^{2}\right) \backslash a n n_{R_{0}[x]}(a x)$. Obviously, $\left(c b x+x^{2}\right) \circ a x \neq 0 \neq a x \circ\left(c b x+x^{2}\right)$. By Lemma 2.5, we have

$$
a n n_{R_{0}[x]}\left(c b x+x^{2}\right)=\ell \cdot a n n_{R_{0}[x]}\left(c b x+x^{2}\right) \subseteq \operatorname{Nil}\left(R_{0}[x]\right) .
$$

Let $g=\sum_{i=s}^{n} c_{i} x^{i} \in a n n_{R_{0}[x]}\left(c b x+x^{2}\right) \cap a n n_{R_{0}[x]}(a x)$ and $c_{s} \neq 0$. Hence either $g \circ a x=0$ or $a x \circ g=0$. If $g \circ a x=0$, then $a c_{s}=0$, which is a contradiction. If $a x \circ g=0$, then $c_{s} a^{s}=0$. Since $a^{s} \neq 0$, there exists $1 \leq t \leq s-1$ such that $c_{s} a^{t} \neq 0$ but $c_{s} a^{t+1}=0$. Hence $c_{s} a^{t} \in \operatorname{ann}_{R}(a) \cap \operatorname{Nil}(R)$, which is a contradiction. Therefore $d\left(\left[c b x+x^{2}\right],[a x]\right) \geq 3$, and so $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$.

Case 2. Let $a \in \operatorname{Nil}(R), b \notin N i l(R)$ and $a b \neq 0$. Hence there exists a positive integer k such that $a^{k}=0$ but $a^{k-1} \neq 0$. Thus $a^{k-1} x+x^{k}, b x \in Z\left(R_{0}[x]\right)$. Since $a x \in a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right) \backslash a n n_{R_{0}[x]}(b x)$, then $[b x] \neq\left[a^{k-1} x+x^{k}\right]$. Moreover, $b x \circ\left(a^{k-1} x+x^{k}\right) \neq 0 \neq\left(a^{k-1} x+x^{k}\right) \circ b x$. Let

$$
g \in a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right) \cap a n n_{R_{0}[x]}(b x) .
$$

Hence $g=\sum_{i=s}^{n} c_{i} x^{i}$ with $c_{s} \neq 0$ is nilpotent, since

$$
\operatorname{ann}_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right)=\ell . a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right) \subseteq \operatorname{Nil}\left(R_{0}[x]\right) .
$$

From $g \circ\left(a^{k-1} x+x^{k}\right)=0$ yields $a^{k-1} c_{s}=0$. On the other hand, if $g \circ b x=0$, then $b c_{s}=0$. Therefore $0 \neq c_{s} \in \operatorname{ann}_{R}\left(\left\{a^{k-1}, b\right\}\right) \cap \operatorname{Nil}(R)$, which is a contradiction by Lemma 2.12. Now assume that $b x \circ g=0$. Then $c_{s} b^{s}=0$. Since $b \notin \operatorname{Nil}(R)$, then $b^{s} \neq 0$. Thus $0 \neq c_{s} \in \operatorname{ann}_{R}\left(\left\{a^{k-1}, b^{s}\right\}\right) \cap \operatorname{Nil}(R)$, which is a contradiction by Lemma 2.12. Hence $d\left(\left[a^{k-1} x+x^{k}\right],[b x]\right) \geq 3$, and so the result follows.

Case 3. Let $a, b \in \operatorname{Nil}(R)$ and $a b \neq 0$. Then there exist positive integers t, k such that $a^{k}=b^{t}=0$ but $a^{k-1} \neq 0 \neq b^{t-1}$. Therefore

$$
a^{k-1} x+x^{k}, b^{t-1} x+x^{t} \in Z\left(R_{0}[x]\right) .
$$

Notice that $\left(a^{k-1} x+x^{k}\right) \circ\left(b^{t-1} x+x^{t}\right) \neq 0 \neq\left(b^{t-1} x+x^{t}\right) \circ\left(a^{k-1} x+x^{k}\right)$. Moreover,

$$
a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right)=\ell . a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right) \subseteq \operatorname{Nil}\left(R_{0}[x]\right)
$$

and $a n n_{R_{0}[x]}\left(b^{t-1} x+x^{t}\right)=\ell . a n n_{R_{0}[x]}\left(b^{t-1} x+x^{t}\right)$. Also, if $a x \in a n n_{R_{0}[x]}\left(b^{t-1} x+x^{t}\right)$, then $a x \circ\left(b^{t-1} x+x^{t}\right)=0$, and so $a \in \operatorname{ann}_{R}\left(\left\{a^{k-1}, b^{t-1}\right\}\right) \cap N i l(R)$, which is a contradiction by Lemma 2.12. Hence

$$
a x \in a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right) \backslash a n n_{R_{0}[x]}\left(b^{t-1} x+x^{t}\right),
$$

and so $\left[a^{k-1} x+x^{k}\right] \neq\left[b^{t-1} x+x^{t}\right]$. Let

$$
g=\sum_{i=s}^{n} c_{i} x^{i} \in a n n_{R_{0}[x]}\left(a^{k-1} x+x^{k}\right) \cap a n n_{R_{0}[x]}\left(b^{t-1} x+x^{t}\right), c_{s} \neq 0 .
$$

Hence $g \circ\left(a^{k-1} x+x^{k}\right)=0=g \circ\left(b^{t-1} x+x^{t}\right)$. Therefore

$$
0 \neq c_{s} \in a n n_{R}\left(\left\{a^{k-1}, b^{t-1}\right\}\right) \cap \operatorname{Nil}(R)
$$

which is a contradiction by Lemma 2.12. Hence $d\left(\left[a^{k-1} x+x^{k}\right],\left[b^{t-1} x+x^{t}\right]\right) \geq 3$, as wanted.

$$
(\Leftarrow) \text { Let } \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3 . \text { Since } \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right) \leq 3
$$ then the result follows.

By using Theorems 2.9 and 2.13, we can determine when $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$.
Theorem 2.14. Let R be a non-reduced commutative ring with $Z(R) \neq 0$. Then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$ if and only if ann $n_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$ and one of the following conditions holds:
(1) $\left|\Gamma_{E}(R)\right| \geq 3$.
(2) $Z(R) \neq \operatorname{ann}_{R}(c)$ for each $c \in R$.
(3) $\operatorname{Nil}(R)^{2} \neq 0$.
(4) There exists $0 \neq c \in Z(R) \backslash \operatorname{Nil}(R)$ such that ann $n_{R}(c) \neq \operatorname{Nil(}(R)$.

Proof. (\Rightarrow) By Theorem 2.13, we have $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=2$. It follows that $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$, by [1, Theorem 2.9], Since $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$, then the result follows from Theorem 2.9.
(\Leftarrow) Since $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$, we have $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=2$, by $\left[1\right.$, Theorem 2.9]. Hence $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \in\{1,2\}$, since $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)$. On the other hand, if one of the conditions (1) - (4) holds, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \neq 1$, by Theorem 2.9, and so the result follows.

3. On the Diameter of the Compressed Zero-divisor Graph of $R_{0}[[x]]$

We denote the collection of all power series with positive orders using the operations of addition and substitution by $R_{0}[[x]]$, unless specifically indicated otherwise (i.e., $R_{0}[[x]]$ denotes $\left(R_{0}[[x]],+, \circ\right)$). Observe that the system ($R_{0}[[x]],+, \circ$) is a zero-symmetric left near-ring. For any $f \in R_{0}[[x]]$, we denote by C_{f} the set of all coefficients of f. Also, the set of all non-zero coefficients of f is denoted by $C_{f}^{*}=C_{f} \backslash\{0\}$.

In this section, we characterize the diameter of the compressed zero-divisor graph of the near-ring $R_{0}[[x]]$.
Lemma 3.1. Let R be a reduced ring. Then
(1) [13, Proposition 2.3] For each $f, g \in R[[x]], f g=0$ if and only if $a_{i} b_{j}=0$ for each $a_{i} \in C_{f}$ and $b_{j} \in C_{g}$.
(2) [6, Lemma 3.3] For each $f, g \in R_{0}[[x]], f \circ g=0$ if and only if $a_{i} b_{j}=0$ for each $a_{i} \in C_{f}$ and $b_{j} \in C_{g}$.
By using Lemma 3.1 and a similar argument as used in the proof of Proposition 2.3, we can conclude the following nice fact.

Proposition 3.2. Let R be a reduced ring. Then
(1) $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=1$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=1$.
(2) $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=2$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=2$.
(3) $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=3$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$.

Let R be a commutative ring. For polynomials, McCoy's Theorem [19, Theorem 2] states that a polynomial $f \in R[x]$ is a zero-divisor if and only if there is a non-zero element $r \in R$ such that $r f=0$. Based on this theorem, a ring R is said to be McCoy ring if each finitely generated ideal contained in $Z(R)$ has a non-zero annihilator [9].
Corollary 3.3. Let R be a reduced commutative ring. Then $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$ if and only if $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=3$.
Proof. $(\Rightarrow) \operatorname{Let} \operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$. Then $\operatorname{diam}(\Gamma(R[[x]]))=3$, by Lemma 3.1. Thus by [17, Theorem 4.9], one of the following cases occurs:

Case 1. R is a McCoy ring with $Z(R)$ an ideal but there exist countably generated ideals I and J with non-zero annihilators such that $I+J$ does not have a non-zero annihilator. Since $Z(R)$ is an ideal, then R has more than two minimal primes. Therefore $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=3$, by [12, Theorem 4.3].

Case 2. $Z(R)$ is an ideal and each two generated ideal contained in $Z(R)$ has a non-zero annihilator but R is not a McCoy ring. Then R has more than two minimal primes and there exists $K=\left\langle a_{1}, \ldots, a_{n}\right\rangle \subseteq Z(R)$ with $a n n_{R}(K)=0$, since R is not McCoy. Hence $n \geq 3$. Therefore one can easily show that there exist finitely generated ideals I and J with non-zero annihilators such that $I+J$ does not have a non-zero annihilator. Hence $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=3$, by [12, Theorem 4.3].

Case 3. R has more than two minimal primes and there is a pair of zero-divisors a and b such that $\langle a\rangle+\langle b\rangle=\langle a, b\rangle$ does not have a non-zero annihilator. Then $\operatorname{diam}\left(\Gamma_{E}(R[[x]])\right)=3$, by [12, Theorem 4.3].

Therefore $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$, by Proposition 3.2.
The backward direction is clear.
Corollary 3.4. Let R be a reduced commutative ring. If $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$.
Proof. Let $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$. Then $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$, by Corollary 2.4. Thus $\operatorname{diam}(\Gamma(R[x]))=3$, by [1, Proposition 2.10], and so $\operatorname{diam}(\Gamma(R[[x]]))=3$, by $\left[17\right.$, Theorem 4.9]. Hence $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$, by Lemma 3.1. Therefore the result follows from Corollary 3.3.

Proposition 3.5. Let R be a reduced commutative ring. Then

$$
\operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)
$$

Proof. Clearly, if $\operatorname{diam}\left(\Gamma_{E}(R)\right)=0$, then we have $\operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)$. Also, $\operatorname{diam}\left(\Gamma_{E}(R)\right)=1$ if and only if $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=1$ if and only if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$, by [12, Theorem 3.3] and Proposition 2.3. Therefore if
$\operatorname{diam}\left(\Gamma_{E}(R)\right)=2$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \geq 2$. Finally, if $\operatorname{diam}\left(\Gamma_{E}(R)\right)=3$, then $\operatorname{diam}\left(\Gamma_{E}(R[x])\right)=3$, by [12, Theorem 4.4]. Hence $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$, by Proposition 2.3.

Obviously, $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)$, if $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$. Now assume that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$. Then there exist $f, g \in Z\left(R_{0}[x]\right)$ with $d\left([f]_{R_{0}[x]},[g]_{R_{0}[x]}\right)=2$. On the contrary, suppose that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=1$. Since $d\left([f]_{R_{0}[x]},[g]_{R_{0}[x]}\right)=2$, we have $f \circ g \neq 0$. Therefore $[f]_{R_{0}[[x]]}=[g]_{R_{0}[[x]]}$, which implies that $[f]_{R_{0}[x]}=R_{0}[x] \cap[f]_{R_{0}[[x]]}=R_{0}[x] \cap[g]_{R_{0}[[x]]}=[g]_{R_{0}[x]}$, a contradiction. Hence $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)$, by Corollary 3.4.

The following lemmas play an important role in proving Theorem 3.10.
Lemma 3.6. ([10, Corollary 1]) Let R be a commutative Noetherian ring. Then $\operatorname{Nil}(R[[x]])=\operatorname{Nil}(R)[[x]]$.
For each $f \in R_{0}[x]$ and positive integer n, we write

$$
f^{(n)}=\underbrace{f \circ f \circ \cdots \circ f}_{n} .
$$

Lemma 3.7. Let R be a commutative Noetherian ring. Then

$$
\operatorname{Nil}\left(R_{0}[[x]]\right)=\operatorname{Nil}(R)_{0}[[x]] .
$$

Proof. First, Suppose that $f=\sum_{r=1}^{\infty} a_{r} x^{r} \in \operatorname{Nil}\left(R_{0}[[x]]\right)$. Then there exists a positive integer n such that $f^{(n)}=0$. We show that for each $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}} \in C_{f}$, we have $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}} \in \operatorname{Nil}(R)$, which implies that $a_{r} \in \operatorname{Nil}(R)$ for each $a_{r} \in C_{f}$, as wanted. We use induction on n. Assume that $n=2$ and $\bar{R}=R / N i l(R)$. Since $0=f \circ f \in \operatorname{Nil}(R)_{0}[[x]]$, then $\bar{f} \circ \bar{f}=\overline{0}$ in $\bar{R}_{0}[[x]]$. By Lemma 3.1, we have $\bar{a}_{i} \bar{a}_{j}=\overline{0}$ for each $\bar{a}_{i}, \bar{a}_{j} \in C_{\bar{f}}$, since \bar{R} is a reduced ring. Thus $a_{i} a_{j} \in \operatorname{Nil}(R)$ for each i, j. Now suppose that $n>2$. Let $g=f^{(n-1)}$. Thus $f \circ g \in \operatorname{Nil}(R)_{0}[[x]]$. By a similar argument as used above, we have $a_{r} a_{g} \in \operatorname{Nil}(R)$, where $a_{g} \in C_{g}$ and $a_{r} \in C_{f}$. Therefore for each $a_{i_{1}} \in C_{f}$,

$$
g \circ a_{i_{1}} x=f^{(n-1)} \circ a_{i_{1}} x=f^{(n-2)} \circ\left(f \circ a_{i_{1}} x\right)=f^{(n-2)} \circ\left(a_{i_{1}} f\right) \in N i l(R)_{0}[[x]] .
$$

By induction, we have $a_{i_{2}} a_{i_{3}} \cdots a_{i_{1}} a_{i_{n}} \in \operatorname{Nil}(R)$, where $a_{i_{j}} \in C_{f}$ for each j and the coefficients of $a_{i_{1}} f$ are $a_{i_{1}} a_{i_{n}}$. Therefore $a_{r} \in \operatorname{Nil}(R)$ for each $a_{r} \in C_{f}$.

Now assume that $f \in \operatorname{Nil}(R)_{0}[[x]]$. Since R is Noetherian, there exists a positive integer k such that $\operatorname{Nil}(R)^{k}=0$. It follows that $C_{f}^{k}=0$. Since for each $n \geq 1$, the coefficient of x^{n} in $f^{(k)}$ is a sum of such elements $a_{i_{1}} a_{i_{2}} \cdots a_{i_{l}}$, where $a_{i_{j}} \in C_{f}$ and $l \geq k$, then we have $f^{(k)}=0$. Hence $f \in \operatorname{Nil}\left(R_{0}[[x]]\right)$.

Lemma 3.8. Let R be a commutative ring. If $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ is a zero-divisor of $R_{0}[[x]]$, then $a_{1} \in Z(R)$.
Proof. Let $a_{1} \neq 0$. Since $f \in Z\left(R_{0}[[x]]\right)$, then there exists $g=\sum_{i=1}^{\infty} b_{i} x^{i} \in R_{0}[[x]]$
such that $f \circ g=0$ or $g \circ f=0$. Let b_{k} be the first non-zero coefficient of g. Assume that $f \circ g=0$. Then $b_{k} a_{1}^{k}=0$. Hence there exists $1 \leq t \leq k-1$ such that $b_{k} a_{1}^{t} \neq 0$ but $b_{k} a_{1}^{t+1}=0$, which implies that $a_{1} \in Z(R)$. On the other hand, if $g \circ f=0$, then $a_{1} b_{k}=0$, and so the result follows.

Lemma 3.9. Let R be a Noetherian commutative ring and $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ be non-zero elements of the near-ring $R_{0}[[x]]$. If $f \circ g=0$, then
(1) $r f=0$ for some non-zero $r \in R$.
(2) f is nilpotent or $s g=0$ for some non-zero $s \in R$.

Proof. (1) Let b_{k} be the first non-zero coefficient of g. Since $f \circ g=0$, we have $b_{k} f^{k}+b_{k+1} f^{k+1}+\cdots=0$. Hence $\left(b_{k}+b_{k+1} f+\cdots\right) f^{k}=0$. If $f^{k}=0$, then there exists $1 \leq t \leq k-1$ such that $f^{t} \neq 0=f^{t+1}$. Therefore $r f=0$ for some $0 \neq r \in R$, by McCoy's Theorem. Thus assume that $f^{k} \neq 0$. Since $0 \neq b_{k}+b_{k+1} f+\cdots$, then the result follows by McCoy's Theorem.
(2) Notice that $\left\langle C_{g}\right\rangle=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ for some $n \geq 1$, since R is Noetherian. Suppose that f is not nilpotent. Thus there exists $a=a_{i}$ such that $a \notin \operatorname{Nil}(R)$, by Lemma 3.6. Let $\bar{R}=R / \operatorname{Nil}(R)$. Since $f \circ g=0$, then $\bar{f} \circ \bar{g}=\overline{0}$ in the near-ring $\bar{R}_{0}[[x]]$. Since \bar{R} is a reduced ring, it follows that $\bar{a}_{i} \bar{b}_{j}=\overline{0}$, by Lemma 3.1. Since R is Noetherian, then $\operatorname{Nil}(R)$ is nilpotent, and so $\operatorname{Nil}(R)^{k}=0$ for some positive integer k. Thus $a^{k} b_{j}^{k}=0$ for each $j \geq 1$. Hence there exist integers $0 \leq t_{j} \leq k$ such that $a^{k} b_{j}^{t_{j}} \neq 0$ but $a^{k} b_{j}^{t_{j}+1}=0$ for each $j \geq 1$. Therefore there exist integers $0 \leq s_{j} \leq t_{j}$ such that $a^{k} b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{n}^{s_{n}} \neq 0$ but $a^{k} b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{n}^{s_{n}} b_{j}=0$ for each $1 \leq j \leq n$. Let $s=a^{k} b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{n}^{s_{n}}$. Thus $s g=0$, since $\left\langle C_{g}\right\rangle=\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Theorem 3.10. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=1$.
(2) If $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=1$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$.

Proof. (1) Let $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=1$. Then $\left|\Gamma_{E}(R)\right| \leq 2, Z(R)=a n n_{R}(a)$ for some $a \in R, \operatorname{Nil}(R)^{2}=0$, and $\operatorname{ann}_{R}(c)=\operatorname{Nil}(R)$ for each $c \in Z(R) \backslash \operatorname{Nil}(R)$, by Theorem 2.9. As shown in the proof of Theorem 2.9, for each $c \in \operatorname{Nil}(R)$, $\operatorname{ann}_{R}(c)=Z(R)$. Assume $c \in \operatorname{Nil(R)}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j} \in Z\left(R_{0}[[x]]\right)$. Since $N i l(R)^{2}=0$, then $c x \circ g=0$, by Lemma 3.8. Thus $\operatorname{ann}_{R_{0}[[x]]}(c x)=Z\left(R_{0}[[x]]\right)$. It is clear that $r . a n n_{R_{0}[[x]]}\left(x^{2}\right)=0$. Also, we have $\ell . a n n_{R_{0}[[x]]}\left(x^{2}\right) \subseteq \operatorname{Nil}(R)_{0}[[x]]$, by Lemmas 3.7 and 3.9. Hence $\operatorname{ann}_{R_{0}[[x]]}\left(x^{2}\right)=\ell \cdot \operatorname{ann}_{R_{0}[[x]]}\left(x^{2}\right)=\operatorname{Nil}\left(R_{0}[[x]]\right)$, since $\operatorname{Nil}(R)^{2}=0$ and $\operatorname{Nil}\left(R_{0}[[x]]\right)=\operatorname{Nil}(R)_{0}[[x]]$. Notice that $[c x] \neq\left[x^{2}\right]$, since $x^{2} \in \operatorname{ann} n_{R_{0}[[x]]}(c x) \backslash \operatorname{ann}_{R_{0}[[x]]}\left(x^{2}\right)$. Now suppose that f be a non-zero element of $Z\left(R_{0}[[x]]\right)$. We can write $f=f_{1}+f_{2}+f_{3}$ such that $C_{f_{1}}^{*} \subseteq \operatorname{Nil}(R)$, $C_{f_{2}}^{*} \subseteq Z(R) \backslash N i l(R)$, and $C_{f_{3}}^{*} \subseteq R \backslash Z(R)$.

Assume $f=f_{1}=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j} \in Z\left(R_{0}[[x]]\right)$. Hence we have $\operatorname{ann} n_{R}\left(a_{i}\right)=Z(R)$ for each $a_{i} \in C_{f}^{*}$, since $C_{f}^{*} \subseteq \operatorname{Nil}(R)$. Thus $f \circ g=0$, since
$N i l(R)^{2}=0$ and $b_{1} \in Z(R)$, by Lemma 3.8. Therefore $a n n_{R_{0}[[x]]}(f)=Z\left(R_{0}[[x]]\right)$, which implies that $[f]=[c x]$.

Suppose that $f=f_{2}=\sum_{i=q}^{\infty} a_{i} x^{i}$ and $a_{q} \neq 0$. Since $C_{f}^{*} \subseteq Z(R) \backslash \operatorname{Nil}(R)$, then $a n n_{R}\left(a_{i}\right)=\operatorname{Nil}(R)$ for each $a_{i} \in C_{f}^{*}$. Hence for each $g \in \operatorname{Nil}(R)_{0}[[x]], f \circ g=0$ and $g \circ f=0$. Let $g=\sum_{j=1}^{\infty} b_{j} x^{j} \in r . a n n_{R_{0}[[x]]}(f)$. Thus $f \circ g=\sum_{j=1}^{\infty} b_{j} f^{j}=0$. Assume that b_{t} is the first non-zero coefficient of g. Then $b_{t} \in a n n_{R}\left(a_{q}^{t}\right)=N i l(R)$, since $b_{t} a_{q}^{t}=0$ and $a_{q}^{t} \notin \operatorname{Nil}(R)$. Hence $b_{t} f=0$, and so $f \circ g=\sum_{j=t+1}^{\infty} b_{j} f^{j}=0$. By repeating this argument, one can deduce that $b_{j} \in \operatorname{Nil}(R)$ for each $b_{j} \in C_{g}^{*}$. Thus $g \in \operatorname{Nil}(R)_{0}[[x]]$, and so r.ann $R_{R_{0}[[x]]}(f)=\operatorname{Nil}(R)_{0}[[x]]$.

Now suppose that $g=\sum_{j=t}^{\infty} b_{j} x^{j} \in \ell . a n n_{\left.R_{0}[x x]\right]}(f)$, where $b_{t} \neq 0$. Therefore

$$
g \circ f=\sum_{i=q}^{\infty} a_{i} g^{i}=0,
$$

which implies that $a_{q} b_{t}^{q}=0$. Hence $b_{t}^{q} \in a n n_{R}\left(a_{q}\right)=\operatorname{Nil}(R)$, and so $b_{t} \in \operatorname{Nil}(R)$. Then $b_{t} a_{i}=0$ for each $a_{i} \in C_{f}^{*}$, and thus $g \circ f=\sum_{i=q}^{\infty} a_{i} g_{1}^{i}=0$, where $g_{1}=\sum_{j=t+1}^{\infty} b_{j} x^{j}$. Continuing this process one can show that $b_{j} \in \operatorname{Nil}(R)$ for each $b_{j} \in C_{g}^{*}$, and so $\ell . a n n_{R_{0}[[x]]}(f) \subseteq \operatorname{Nil}(R)_{0}[[x]]$. Hence $\operatorname{ann}_{R_{0}[[x]]}(f)=\operatorname{Nil}(R)_{0}[[x]]$. Therefore $[f]=\left[f_{2}\right]=\left[x^{2}\right]$.

If $f=f_{3}$ or $f=f_{1}+f_{2}\left(f_{1} \neq 0 \neq f_{2}\right)$ or $f=f_{1}+f_{3}\left(f_{1} \neq 0 \neq f_{3}\right)$ or $f=f_{2}+f_{3}\left(f_{2} \neq 0 \neq f_{3}\right)$ or $f=f_{1}+f_{2}+f_{3}$ (each f_{i} be non-zero), then by using Lemmas 3.7, 3.9 and a similar argument as used in the proof of Theorem 2.9, one can show that $[f]=\left[x^{2}\right]=\operatorname{Nil}(R)_{0}[[x]]$. Hence $\left|\Gamma_{E}\left(R_{0}[[x]]\right)\right|=2$, and thus $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=1$.
(2) It is clear.

Proposition 3.11. Let R be a non-reduced commutative ring. Then
(1) If $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$, then $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R)=0$ for some $a, b \in Z(R)$.
(2) Let R be a Noetherian ring. If $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R)=0$ for some $a, b \in Z(R)$, then $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$.

Proof. (1) Since $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$, then there exist $f, g \in R_{0}[[x]]$ such that $d(f, g)=3$. Let a_{t} and b_{q} be the first non-zero coefficients of f and g, respectively. On the contrary, suppose that $a n n_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$. By Lemma 3.8, we have $a_{t}, b_{q} \in Z(R)$. Hence there exists $c \in N i l(R)$ such that $c a_{t}=b_{q} c=0$. Let $c^{r}=0 \neq c^{r-1}$ for some positive integer r. Therefore $f-c^{r-1} x-g$ is a path in $\Gamma\left(R_{0}[[x]]\right)$, which is a contradiction.
(2) Since R is non-reduced, there exists $c \in R$ such that $c^{2}=0$. It follows that $x^{2}, x^{3} \in Z\left(R_{0}[[x]]\right)$ and $x^{2} \circ x^{3} \neq 0 \neq x^{3} \circ x^{2}$. Thus $d\left(x^{2}, x^{3}\right) \geq 2$, and so $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right) \geq 2$. On the contrary, suppose that $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right) \neq 3$. Therefore $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=2$, by [8, Theorem 2.2]. Let $a, b \in Z(R)$. We show that $a x+x^{2}, b x+x^{2} \in Z\left(R_{0}[[x]]\right)$. If $a^{k-1} \neq 0=a^{k}$ for some positive integer k, then $a^{k-1} x \circ\left(a x+x^{2}\right)=0$. Thus assume that $a \notin \operatorname{Nil}(R)$. Since $a x, x^{2} \in Z\left(R_{0}[[x]]\right)$ and
$a x \circ x^{2} \neq 0 \neq x^{2} \circ a x$, then there exists a non-zero nilpotent element $f=\sum_{i=r}^{\infty} c_{i} x^{i}$ with $c_{r} \neq 0$ such that $a x-f-x^{2}$ is a path. If $f \circ a x=0$, then $a c_{r}=0$. By Lemma 3.6, we have $c_{r}^{k-1} \neq 0=c_{r}^{k}$ for some positive integer k. Therefore $c_{r}^{k-1} x \circ\left(a x+x^{2}\right)=0$. If $a x \circ f=0$, then $c_{r} a^{r}=0$. Hence there exists $1 \leq t \leq r-1$ such that $c_{r} a^{t} \neq 0=c_{r} a^{t+1}$, and so $c_{r} a^{t} x \circ\left(a x+x^{2}\right)=0$. Similarly, we have $b x+x^{2} \in Z\left(R_{0}[[x]]\right)$. Since $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=2$ and

$$
\left(a x+x^{2}\right) \circ\left(b x+x^{2}\right) \neq 0 \neq\left(b x+x^{2}\right) \circ\left(a x+x^{2}\right),
$$

then $g \circ\left(a x+x^{2}\right)=0=g \circ\left(b x+x^{2}\right)$ for some non-zero nilpotent element g, by Lemma 3.9. Let s be the first non-zero coefficient of g. Therefore $s \in a n n_{R}(\{a, b\}) \cap N i l(R)$, which is a contradiction.

Corollary 3.12. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$.
(2) If $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma\left(R_{0}[x]\right)\right)=3$.

Proof. It follows from Propositions 2.11 and 3.11.
Theorem 3.13. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$.
(2) If $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=3$.

Proof. (1) By using Lemmas 3.7, 3.9, Proposition 3.11 and a similar argument as used in the proof of Theorem 2.13, one can prove it.
(2) It is clear.

Corollary 3.14. Let R be a non-reduced commutative ring. Then
(1) If R is Noetherian and $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$.
(2) If $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=3$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=3$.

Proof. It follows from Theorems 2.13, 3.13 and Corollary 3.12.
Proposition 3.15. Let R be a non-reduced commutative ring. Then
(1) If $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=2$.
(2) If R is Noetherian and $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)=2$, then $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$

Proof. This follows from Theorem 3.10 and Corollary 3.14.
Proposition 3.16. Let R be a non-reduced Noetherian commutative ring. If $Z(R) \neq \operatorname{ann}_{R}(a)$ for each $a \in R$, then

$$
\operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)
$$

Proof. Clearly, $\operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)$, if $\operatorname{diam}\left(\Gamma_{E}(R)\right) \in\{0,1\}$. Hence suppose that $\operatorname{diam}\left(\Gamma_{E}(R)\right)=2$. Then $\left.\mid \Gamma_{E}(R)\right) \mid \geq 3$, which implies that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \geq 2$, by Theorem 2.9.

Now assume that $\operatorname{diam}\left(\Gamma_{E}(R)\right)=3$. Notice that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \geq 2$, by Theorem 2.9. On the contrary, suppose that $\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)=2$. Thus $Z(R)$ is an ideal and each pair of zero-divisors has a non-zero annihilator, by Theorem 2.14. Since $Z(R) \neq a n n_{R}(a)$ for every $a \in Z(R)$, then $\operatorname{diam}\left(\Gamma_{E}(R)\right)=2$, by [12, Theorem 2.3], which is a contradiction. Hence $\operatorname{diam}\left(\Gamma_{E}(R)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right)$.

Also, by Corollary 3.14 and Proposition 3.15, we have

$$
\operatorname{diam}\left(\Gamma_{E}\left(R_{0}[x]\right)\right) \leq \operatorname{diam}\left(\Gamma_{E}\left(R_{0}[[x]]\right)\right)
$$

References

[1] A. Alhevaz, E. Hashemi and F. Shokuhifar, On zero-divisor of near-rings of polynomials, Quaest. Math., 42(3)(2019), 363-372.
[2] D. F. Anderson and J. D. LaGrange, Some remarks on the compressed zero-divisor graph, J. Algebra, 447(2016), 297-321.
[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[4] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc., 18(1974), 470-473.
[5] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
[6] G. F. Birkenmeier and F. K. Huang, Annihilator conditions on formal power series, Algebra Colloq., 9(1)(2002), 29-37.
[7] G. F. Birkenmeier and F. K. Huang, Annihilator conditions on polynomials, Comm. Algebra, 29(5)(2001), 2097-2112.
[8] G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, Nearrings and nearfields, Springer, Dordrecht(2005).
[9] C. Faith, Annihilators, associated prime ideals and Kasch-McCoy commutative rings, Comm. Algebra, 119(1991), 1867-1892.
[10] D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc., 27(1971), 427-433.
[11] E. Hashemi, On nilpotent elements in a near-ring of polynomials, Math. Commun., $\mathbf{1 7}$ (2012), 257-264.
[12] E. Hashemi, M. Abdi and A. Alhevaz, On the diameter of the compressed zero-divisor graph, Comm. Algebra, 45(2017), 4855-4864.
[13] E. Hashemi and A. Moussavi, Skew power series extensions of α-rigid p.p. rings, Bull. Korean math. Soc., 41(4)(2004), 657-664.
[14] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168(1)(2002), 45-52.
[15] J. A. Huckaba, Commutative Rings with Zero-Divisors, Marcel Dekker Inc., New York(1988).
[16] Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra, 34(2006), 26072616.
[17] T. Lucas, The diameter of a zero-divisor graph, J. Algebra, 301(2006), 174-193.
[18] H. R. Maimani, M. R. Pournaki and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra, 34(2006), 923-929.
[19] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly, 49(1942), 286-295.
[20] S. B. Mulay, Cycles and symmetries of zero-divisor, Comm. Algebra, 30(2002), 35333558.
[21] G. Pilz, Near-rings, second edition, North-Holland Mathematics Studies, 23, NorthHolland Publishing Co., Amsterdam(1983).
[22] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings, 1(2002), 203-211.
[23] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra, 39(2011), 2338-2348.

[^0]: * Corresponding Author.

 Received June 26, 2021; revised January 2, 2022; accepted January 13, 2022.
 2020 Mathematics Subject Classification: 16Y30, 05C12.
 Key words and phrases: Near-ring of polynomials, Zero-divisor graph, Compressed zero-divisor graph, Diameter of graph, Near-ring of formal power series.

