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Abstract. Unlike for polynomial rings, the notion of multiplication for the near-ring of

polynomials is the substitution operation. This leads to somewhat surprising results. Let

S be an abelian left near-ring with identity. The relation ∼ on S defined by letting a ∼ b

if and only if annS(a) = annS(b), is an equivalence relation. The compressed zero-divisor

graph ΓE(S) of S is the undirected graph whose vertices are the equivalence classes in-

duced by ∼ on S other than [0]S and [1]S , in which two distinct vertices [a]S and [b]S
are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying

the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials R0[x]

and the near-ring of the power series R0[[x]] over a commutative ring R. Also, we give a

complete characterization of the diameter of these two graphs. It is natural to try to find

the relationship between diam
(
ΓE(R0[x])

)
and diam

(
ΓE(R0[[x]])

)
. As a corollary, it is

shown that for a reduced ring R, diam
(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
.

1. Introduction

Throughout this paper, all rings are associative rings with identity and all
near-rings are abelian left near-rings with unity. Recall that a non-empty set S
with two binary operations “ + ” and “ · ” is an abelian left near-ring if (S,+)
forms an abelian group, (S, ·) forms a semi-group, and a · (b + c) = a · b + a · c for
each a, b, c ∈ S. Clearly, every ring is a near-ring. The zero-symmetric part of a
near-ring S is the set of all elements a ∈ S such that 0 · a = 0 and it is denoted
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by S0. Moreover, a near-ring N is called zero-symmetric if S = S0. Let S be a
near-ring and A ⊆ S. Then annS(A) = ℓ.annS(A) ∪ r.annS(A), where

ℓ.annS(A) = {s ∈ S | sa = 0 for each a ∈ A}

and r.annS(A) = {s ∈ S | as = 0 for each a ∈ A}. Also, we write Zℓ(S), Zr(S)
and Z(S) for the set of all left zero-divisors of S, the set of all right zero-divisors
and the set Zℓ(S) ∪ Zr(S), respectively. Moreover, we use ⟨A⟩ to denote the ideal
generated by A. For basic definitions and comprehensive discussion on near-rings,
we refer the reader to [21].

Let G be a graph. Recall that G is connected if there is a path between any two
distinct vertices of G. Also, the diameter of G is

diam(G) = sup
{
d(a, b)|a, b are vertices of G

}
,

where d(a, b) is the length of the shortest path from a to b. Moreover, the girth of
G, gr(G), is the length of the shortest cycle of the graph, and gr(G) = ∞ if G has
no cycles.

The concept of a zero-divisor graph of a commutative ring R was introduced
by Beck in [5]. However, he let all elements of R be vertices of the graph and was
mainly interested in coloring. Inspired by his study, Anderson and Livingston [3],
redefined and studied the (undirected) zero-divisor graph Γ(R), whose vertices are
the non-zero zero-divisors of a ring such that distinct vertices x and y are adjacent
if and only if xy = 0. According to [3, Theorems 2.3 and 2.4], Γ(R) is connected
with diam(Γ(R)) ≤ 3, and gr(Γ(R)) ≤ 4 if Γ(R) contains a cycle. Redmond [22]
extended the concept of the zero-divisor graph to noncommutative rings. Several
papers are devoted to studying the relationship between the zero-divisor graph and
algebraic properties of rings (cf. [3, 15, 17, 18, 20, 22]).

In [8], the authors generalized this concept to a zero-symmetric near-ring S.
They defined an undirected graph Γ(S) with vertices in the set Z∗(S) = Z(S) \ {0}
and such that for distinct vertices a and b there is an edge connecting them if and
only if ab = 0 or ba = 0. Following [8, Theorem 2.2], the zero-divisor graph of
zero-symmetric near-ring S is connected and diam

(
Γ(S)

)
≤ 3.

For a ring or near-ring S, define a ∼ b if and only if annS(a) = annS(b). As
in [20], one can see that ∼ is an equivalence relation on S. For any a ∈ S, let
[a]S = {b ∈ S | a ∼ b} (for short we can use [a] instead of [a]S). For instance, it
is clear that [0]S = {0} and [1]S = S \ Z(S), and that [a]S ⊆ Z(S) \ {0} for each
a ∈ S \ ([0]S ∪ [1]S).

As in [23], ΓE(S) will denote the (undirected) graph, called the compressed
zero-divisor graph of S, whose vertices are the elements of SE \ {[0]S , [1]S} such
that distinct vertices [a]S and [b]S are adjacent if and only if ab = 0 or ba = 0. Note
that if a and b are distinct adjacent vertices in Γ(S), then [a]S and [b]S are adjacent
in ΓE(S) if and only if [a]S ̸= [b]S . Clearly, diam

(
ΓE(S)

)
≤ diam

(
Γ(S)

)
. For a

commutative ring R, Anderson and LaGrange [2], showed that gr
(
ΓE(R)

)
= 3 if
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ΓE(R) contains a cycle, and determined the structure of ΓE(R) when it is a cyclic
and the monoid RE when ΓE(R) is a star graph.

Let R be a ring. Since R[x] is an abelian near-ring under addition and
substitution, it is natural to investigate the near-ring of polynomials (R[x],+, ◦).
The binary operation of substitution, denoted by “ ◦ ”, of one polynomial into
another is both natural and important in the theory of polynomials. We adopt the
convention that for polynomials f =

∑m
i=0 aix

i and g ∈ R[x],

g ◦ f =
m∑
i=0

aig
i.

For example, (a0 + a1x) ◦ x2 = (a0 + a1x)
2 = a20 + (a0a1 + a1a0)x + a21x

2.
However, the operation ◦, left distributes but does not right distribute over
addition. Thus (R[x],+, ◦) forms a left near-ring but not a ring. We use R[x]
to denote the left near-ring (R[x],+, ◦) with coefficients from R and

R0[x] = {f ∈ R[x] | f has zero constant term}

is the zero-symmetric left near-ring of polynomials with coefficients in R. Also,
for each f =

∑m
i=0 aix

i and g =
∑n

j=0 bjx
j ∈ R[x], we write

fg =
∑n+m

k=0 (
∑

i+j=k aibj)x
k.

The aim of this paper is the study of the compressed zero-divisor graphs
of zero-symmetric near-ring of polynomials R0[x] and near-ring of formal power
series R0[[x]] over a commutative ring R. For a reduced ring R, we prove that
diam

(
ΓE(R0[x])

)
= i if and only if diam

(
ΓE(R[x])

)
= i for each i = 1, 2, 3.

Moreover, we show that diam
(
ΓE(R0[x])

)
= 1 if and only if |ΓE(R)| ≤ 2,

Nil(R)2 = 0, Z(R) = annR(a) for some a ∈ R, and annR(c) = Nil(R) for each
c ∈ Z(R) \ Nil(R). Also, it is proved that diam

(
Γ(R0[x])

)
= 3 if and only if

diam
(
ΓE(R0[x])

)
= 3. In addition, we are interested in characterizing the diameter

of graph ΓE(R0[[x]]). In fact, The diameter of the graphs ΓE(R[[x]]) and ΓE(R0[[x]])
are the same when R is a reduced ring. Also, we try to relate diam

(
ΓE(R)

)
to

ΓE(R0[[x]]). As a corollary, it is shown that

diam
(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
,

where R is reduced. Moreover, we give a complete characterization for the possible
diameters of ΓE(R0[[x]]), where R is a non-reduced Noetherian ring.

2. On the Diameter of the Compressed Zero-divisor Graph of R0[x]

Let R be a commutative ring. Following [1, Theorem 2.7], we have

2 ≤ diam
(
Γ(R0[x])

)
≤ 3.
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Hence diam
(
ΓE(R0[x])

)
≤ 3, since diam

(
ΓE(R0[x])

)
≤ diam

(
Γ(R0[x])

)
.

Proposition 2.1. Let R be a commutative ring with Z(R) ̸= 0. Then
diam

(
ΓE(R0[x])

)
≥ 1.

Proof. First suppose that R is a reduced ring and 0 ̸= a ∈ Z(R). Thus ab = 0
for some non-zero b ̸= a of R. If [ax] = [bx], then ax ∈ annR0[x](ax), and so

a2 = 0, which is a contradiction. Hence diam
(
ΓE(R0[x])

)
≥ 1. Now assume R

is a non-reduced ring. Then there exists 0 ̸= a ∈ R such that a2 = 0. Thus
ax, ax+x2 ∈ Z

(
R0[x]

)
. Also, x2 ∈ annR0[x](ax) but x

2 /∈ annR0[x](ax+x2), which

implies that [ax] ̸= [ax+ x2], and so diam
(
ΓE(R0[x])

)
≥ 1. 2

For any f ∈ R[x], we denote by Cf the set of all coefficients of f . Also, the set
of all non-zero coefficients of f is denoted by C∗

f = Cf \ {0}.
To characterize the diameter of ΓE(R0[x]), where R is a reduced ring, we need

the following lemma.

Lemma 2.2. Let R be a reduced ring. Then

(1) [4, Lemma 1] For each f, g ∈ R[x], fg = 0 if and only if aibj = 0 for each
ai ∈ Cf and bj ∈ Cg.

(2) [7, Lemma 3.4] For each f, g ∈ R0[x], f ◦ g = 0 if and only if aibj = 0 for
each ai ∈ Cf and bj ∈ Cg.

Let R be a reduced ring and f, g be elements of the ring R[x]. Then fg = 0
if and only if aibj = 0 for each ai ∈ Cf and bj ∈ Cg, by Lemma 2.2. Hence
fx ◦ gx = 0, by Lemma 2.2. On the other hand, Z(R0[x]) ⊆ Z(R[x]), by Lemma
2.2. Thus d([f ], [g]) = t in ΓE

(
R[x]

)
, if and only if d([fx], [gx]) = t in ΓE

(
R0[x]

)
.

Therefore we can conclude the next result.

Proposition 2.3. Let R be a reduced ring. Then

(1) diam
(
ΓE(R[x])

)
= 1 if and only if diam

(
ΓE(R0[x])

)
= 1.

(2) diam
(
ΓE(R[x])

)
= 2 if and only if diam

(
ΓE(R0[x])

)
= 2.

(3) diam
(
ΓE(R[x])

)
= 3 if and only if diam

(
ΓE(R0[x])

)
= 3.

Corollary 2.4. Let R be a reduced commutative ring. Then diam
(
Γ(R0[x])

)
= 3 if

and only if diam
(
ΓE(R0[x])

)
= 3.

Proof. (⇒) Since diam
(
Γ(R0[x])

)
= 3, then we have diam

(
Γ(R[x])

)
= 3, by

[1, Proposition 2.10]. Thus diam
(
ΓE(R[x])

)
= 3, by [12, Theorem 3.3]. Hence

diam
(
ΓE(R0[x])

)
= 3, by Proposition 2.3.

(⇐) It is clear, since diam
(
ΓE(R0[x])

)
≤ diam

(
Γ(R0[x])

)
≤ 3. 2

Now, we investigate the diameter of ΓE(R0[x]), when R is not reduced. For this
purpose, we bring the following lemmas which are used extensively in the sequel.
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Lemma 2.5. ([1, Lemma 2.4]) Let R be a commutative ring and f =
∑n

i=1 aix
i,

g =
∑m

j=1 bjx
j be non-zero elements of R0[x] with f ◦ g = 0. Then

(1) rf = 0 for some non-zero r ∈ R.

(2) f is nilpotent or sg = 0 for some non-zero s ∈ R.

Lemma 2.6. ([1, Proposition 2.5]) Let R be a non-reduced commutative ring. Then

Zr

(
R0[x]

)
= Zℓ

(
R0[x]

)
∪

{
n∑

i=1

aix
i ∈ R0[x] | annR(a1) ∩Nil(R) ̸= 0 and ai ∈ R for each i ≥ 2},

where Zℓ

(
R0[x]

)
= {f ∈ R0[x] | rf = 0, for some 0 ̸= r ∈ R}.

Lemma 2.7. Let R be a non-reduced commutative ring and for each a, b ∈ Z(R),
annR

(
{a, b}

)
∩ Nil(R) ̸= 0. Then diam

(
ΓE(R0[x])

)
≤ 2. Also, if there exists

c ∈ Nil(R) such that ck = 0 ̸= ck−1 for some k ≥ 3, then diam
(
ΓE(R0[x])

)
= 2.

Proof. By [1, Theorem 2.9], we have diam
(
ΓE(R0[x])

)
≤ diam

(
Γ(R0[x])

)
= 2.

Now assume that ck = 0 but ck−1 ̸= 0 for some c ∈ Nil(R) and k ≥ 3. Since
c2x ◦ xk−1 = 0, then xk−1 ∈ Z

(
R0[x]

)
. Also, cx ◦ xk−1 ̸= 0 ̸= xk−1 ◦ cx. Since

xk ∈ annR0[x](cx) but xk /∈ annR0[x](x
k−1), then [cx] ̸= [xk−1]. It follows that

d(cx, xk−1) ≥ 2, and thus diam
(
ΓE(R0[x])

)
= 2. 2

Following [14], a ring R is called semicommutative if ab = 0 implies aRb = 0 for
each a, b ∈ R.

Remark 2.8. Let R be a commutative ring. Then R is a semicommutative
ring, and so Nil

(
R[x]

)
= Nil(R)[x], by [16]. On the other hand, Nil

(
R0[x]

)
=

Nil(R)0[x], by [11, Corollary 2]. Therefore Nil
(
R0[x]

)
= Nil

(
R[x]

)
x. We use this

fact freely in the sequel.

For any f ∈ R0[x], we use deg(f) to denote the degree of f .

Theorem 2.9. Let R be a non-reduced commutative ring. Then diam
(
ΓE(R0[x])

)
=

1 if and only if |ΓE(R)| ≤ 2, Nil(R)2 = 0, Z(R) = annR(a) for some a ∈ R, and
annR(c) = Nil(R) for each c ∈ Z(R) \Nil(R).

Proof. (⇒) Let diam
(
ΓE(R0[x])

)
= 1. Since R is a non-reduced ring, there exists

0 ̸= a ∈ R such that a2 = 0. Let b ∈ Z(R). If [ax] = [bx], then ax ∈ annR0[x](bx),
since a2 = 0. Thus ax ◦ bx = 0, and so ab = 0. Also, if [ax] ̸= [bx], then ax ◦ bx = 0,
by hypothesis. Hence ab = 0. Therefore Z(R) = annR(a). It follows that for each
b ∈ Nil(R), b2 = 0, by Lemma 2.7. Now assume that b, c are distinct elements of
Nil(R). If [bx] = [cx], then cx ∈ annR0[x](bx), and so bc = 0. If [bx] ̸= [cx], then
0 = bcx = bx ◦ cx, by assumption. Hence Nil(R)2 = 0.

Now suppose that c ∈ Z(R) \Nil(R) and d ∈ annR(c). Thus [x
2] = [cx], since

diam
(
ΓE(R0[x])

)
= 1. Hence dx ∈ annR0[x](cx) = annR0[x](x

2), which implies that
d2 = 0, and so annR(c) ⊆ Nil(R). Also, by a similar way as used above, we have
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Z(R) = annR(b) for each b ∈ Nil(R), since b2 = 0. Hence Nil(R) ⊆ annR(c).
Therefore Nil(R) = annR(c).

Let c ∈ Z(R). If c is nilpotent, then annR(c) = Z(R), and if c /∈ Nil(R), then
annR(c) = Nil(R). Hence there exist at most two different vertices [a]R and [b]R
in ΓE(R), where a ∈ Nil(R) and b /∈ Nil(R). This shows that |ΓE(R)| ≤ 2.

(⇐) We claim that for each c ∈ Nil(R), annR0[x](cx) = Z
(
R0[x]

)
and

annR(c) = Z(R). Since Nil(R)2 = 0 and c ∈ Nil(R), then Nil(R) ⊆ annR(c).
Now assume d ∈ Z(R) \ Nil(R). Hence annR(d) = Nil(R), and thus cd = 0.
It means that annR(c) = Z(R). Now suppose that g =

∑m
j=1 bjx

j ∈ Z
(
R0[x]

)
.

Thus cx ◦ g = 0, since Nil(R)2 = 0 and b1 ∈ Z(R), by Lemma 2.6. Hence
annR0[x](cx) = Z

(
R0[x]

)
. On the other hand, since R is non-reduced,

x2 ∈ Z
(
R0[x]

)
. Also, x2 ∈ annR0[x](cx) but x2 /∈ annR0[x](x

2). Hence we have
at least two vertices [cx] and [x2] in ΓE(R0[x]). Clearly, r.annR0[x](x

2) = 0. On
the other hand, if g ∈ ℓ.annR0[x](x

2), then g2 = 0, and so g ∈ Nil(R)0[x]. Since
Nil(R)2 = 0, then Nil(R)0[x] ⊆ ℓ.annR0[x](x

2), and thus

annR0[x](x
2) = Nil(R)0[x] = Nil

(
R0[x]

)
.

Now let f be a non-zero element of Z
(
R0[x]

)
. We can write f = f1 + f2 + f3 such

that C∗
f1

⊆ Nil(R), C∗
f2

⊆ Z(R) \ Nil(R), and C∗
f3

⊆ R \ Z(R). We consider the
following cases:

Case 1. Let f = f1 =
∑n

i=1 aix
i and g =

∑m
j=1 bjx

j ∈ Z
(
R0[x]

)
. Since

C∗
f1

⊆ Nil(R), then annR(ai) = Z(R) for each 1 ≤ i ≤ n. Also, by Lemma 2.6,

b1 ∈ Z(R). Hence f ◦ g = 0, since Nil(R)2 = 0. Therefore annR0[x](f) = Z
(
R0[x]

)
,

and so [f ] = [f1] = [cx].
Case 2. Let f = f2 =

∑n
i=1 aix

i. Then annR(ai) = Nil(R) for each 1 ≤ i ≤ n.
Suppose that g =

∑m
j=1 bjx

j ∈ r.annR0[x](f). It means that

f ◦ g = b1f + b2f
2 + · · ·+ bmfm = 0.

Thus bmamn = 0, since it is the leading coefficient of f ◦ g = 0. Also, from
an /∈ Nil(R) yields amn /∈ Nil(R), and so bm ∈ annR0[x](a

m
n ) = Nil(R). Hence

bm ∈ Nil(R), which implies that bmf = 0, since annR(ai) = Nil(R). Thus
f ◦ g = b1f + b2f

2 + · · · + bm−1f
m−1 = 0. Continuing this process, we see

that bj ∈ Nil(R) for each 1 ≤ j ≤ m − 1. Hence g is a nilpotent element of
R0[x], and so r.annR0[x](f) ⊆ Nil(R)0[x]. Now assume that g ∈ ℓ.annR0[x](f).
Thus g ◦ f = a1g + a2g

2 + · · · + ang
n = 0, and so anb

n
m = 0. This shows that

bnm ∈ annR(an) = Nil(R), which implies that bm ∈ Nil(R). Hence

g ◦ f = a1g1 + a2g
2
1 + · · ·+ ang

n
1 = 0,

where g1 =
∑m−1

j=1 bjx
j . By repeating this argument, we can conclude that

bj ∈ Nil(R) for each 1 ≤ j ≤ m − 1. Therefore ℓ.annR0[x](f) ⊆ Nil(R)0[x]. Since
annR(ai) = Nil(R) for each 1 ≤ i ≤ n, then g◦f = 0 = f◦g for each g ∈ Nil(R)0[x].
Hence annR0[x](f) = Nil(R)0[x] = Nil

(
R0[x]

)
. Therefore [f ] = [f2] = [x2].
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Case 3. Let f = f3 =
∑n

i=1 aix
i. Then a1 = 0, by Lemma 2.6. Since rf ̸= 0 for

each 0 ̸= r ∈ R, then r.annR0[x](f) = 0, by Lemma 2.5. Also, if g ∈ ℓ.annR0[x](f),
then g is nilpotent, by Lemma 2.5. Since Nil(R)2 = 0, then

h ◦ f = a2h
2 + · · ·+ anh

n = 0

for each h ∈ Nil(R)0[x]. Therefore

annR0[x](f) = ℓ.annR0[x](f) = Nil(R)0[x] = Nil
(
R0[x]

)
.

Hence [f ] = [f3] = [x2].
Case 4. Let f = f1 + f2, where 0 ̸= f1 =

∑n
i=1 aix

i and 0 ̸= f2 =
∑t

s=1 csx
s.

Suppose that g ∈ ℓ.annR0[x](f). Then rg = 0 for some 0 ̸= r ∈ R, by Lemma
2.5. Thus C∗

g ⊆ Z(R). Since annR(ai) = Z(R) for each ai ∈ C∗
f1
, we have

g ◦ f = c1g + c2g
2 + · · ·+ ctg

t = g ◦ f2 = 0, which implies that g ∈ ℓ.annR0[x](f2).

Thus ℓ.annR0[x](f) ⊆ Nil
(
R0[x]

)
, by Case 2. Now, assume

g =
∑m

j=1 bjx
j ∈ r.annR0[x](f).

Since f is not nilpotent, then C∗
g ⊆ Z(R), by Lemma 2.5. Hence

0 = f ◦ g = b1f + b2f
2 + · · ·+ bmfm = b1f2 + b2f

2
2 + · · ·+ bmfm

2 = f2 ◦ g,

which implies that g ∈ r.annR0[x](f2), and so g ∈ Nil
(
R0[x]

)
, by Case 2. Since

annR(ai) = Z(R) for each ai ∈ C∗
f1

and annR(cs) = Nil(R) for each cs ∈ C∗
f2
, then

ℓ.annR0[x](f) = r.annR0[x](f) = Nil
(
R0[x]

)
. Hence annR0[x](f) = Nil

(
R0[x]

)
.

Therefore [f ] = [f1 + f2] = [x2].
Case 5. Let f = f1 + f3, where 0 ̸= f1 =

∑n
i=1 aix

i and 0 ̸= f3 =
∑t

s=1 csx
s.

Then a1 + c1 is the coefficient of x in f . By Lemma 2.6, we have a1 + c1 ∈ Z(R).
Thus c1 = 0, since a1 ∈ Z(R) and Z(R) = annR(a) for some a ∈ R. Hence
deg(f3) ≥ 2. Similar to Case 3, we can conclude that r.annR0[x](f) = 0. On
the other hand, if g ◦ f = 0 for some g ∈ R0[x], then g is nilpotent, by Lemma
2.5. Hence ℓ.annR0[x](f) ⊆ Nil

(
R0[x]

)
. Since Nil(R)2 = 0 and annR(ai) = Z(R)

for each ai ∈ C∗
f1
, then g ◦ f = 0 for each g ∈ Nil

(
R0[x]

)
. Therefore we have

annR0[x](f) = ℓ.annR0[x](f) = Nil
(
R0[x]

)
. Thus [f ] = [f1 + f3] = [x2].

Case 6. Let f = f2 + f3, where fi ̸= 0 for each i ∈ {2, 3}. Since deg(f3) ≥ 2
and annR(ai) = Nil(R) for each ai ∈ C∗

f2
, then by a similar way as used in Case 5

one can show that annR0[x](f) = ℓ.annR0[x](f) = Nil
(
R0[x]

)
. Hence [f ] = [x2].

Case 7. Let f = f1 + f2 + f3, where fi ̸= 0 for each i ∈ {1, 2, 3}. Since
C∗

f3
⊆ R\Z(R), then r.annR0[x](f) = 0 and ℓ.annR0[x](f) ⊆ Nil

(
R0[x]

)
, by Lemma

2.5. Hence annR0[x](f) = Nil
(
R0[x]

)
, and so [f ] = [f1 + f2 + f3] = [x2].

Therefore |ΓE(R0[x])| = 2, and thus diam
(
ΓE(R0[x])

)
= 1. 2

Corollary 2.10. Let R be a non-reduced commutative ring with Z(R) ̸= 0. If
Z(R)2 = 0, then diam

(
ΓE(R0[x])

)
= 1.
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From [1, Theorems 2.7 and 2.9], we immediately deduce the following result.

Proposition 2.11. Let R be a non-reduced commutative ring. Then there
exist a, b ∈ Z(R) with annR

(
{a, b}

)
∩Nil(R) = 0 if and only if diam

(
Γ(R0[x])

)
= 3

Lemma 2.12. Let R be a commutative ring and a, b ∈ R. If

annR

(
{a, b}

)
∩Nil(R) = 0,

then annR

(
{ak, bs}

)
∩Nil(R) = 0 for each positive integer k, s with ak ̸= 0 ̸= bs.

Proof. Let ak ̸= 0 for some positive integer k. On the contrary, assume that
and 0 ̸= t ∈ annR

(
{ak, b}

)
∩ Nil(R). Then tak = 0 = tb. Hence there exists

1 ≤ r ≤ k − 1 such that tar ̸= 0 but tar+1 = 0. Thus tar ∈ annR

(
{a, b}

)
∩Nil(R),

which is a contradiction. Now suppose bs ̸= 0 for some positive integer s. Put
a′ = ak ̸= 0. Hence annR

(
{a′, b}

)
∩ Nil(R) = 0, and so by a similar way as used

above, annR

(
{a′, bs}

)
∩Nil(R) = 0, as desired. 2

Theorem 2.13. Let R be a non-reduced commutative ring. Then diam
(
Γ(R0[x])

)
=

3 if and only if diam
(
ΓE(R0[x])

)
= 3.

Proof. (⇒) Let diam
(
Γ(R0[x])

)
= 3. Then there exist a, b ∈ Z(R), such that

annR

(
{a, b}

)
∩ Nil(R) = 0, by Proposition 2.11. Notice that if a or b ∈ Nil(R)

and ab = 0, then annR

(
{a, b}

)
∩ Nil(R) ̸= 0, which is a contradiction. Hence we

consider the following cases:
Case 1. Let a, b /∈ Nil(R). Since annR

(
{a, b}

)
∩Nil(R) = 0, then either there

exists c ∈ Nil(R) such that ca = 0 but cb ̸= 0 or for each c ∈ Nil(R), ca ̸= 0 ̸= cb.
First assume ca = 0 but cb ̸= 0 for some c ∈ Nil(R). There exists a positive

integer k such that ck = 0. Hence ax+ xk, bx ∈ Z
(
R0[x]

)
. Since

cx ∈ annR0[x](ax+ xk)

but cx /∈ annR0[x](bx), then [ax+xk] ̸= [bx]. Also, bx◦(ax+xk) ̸= 0 ̸= (ax+xk)◦bx.
Since for each 0 ̸= r ∈ R, r(ax+ xk) ̸= 0, then

annR0[x](ax+ xk) = ℓ.annR0[x](ax+ xk) ⊆ Nil(R0[x]),

by Lemma 2.5. Suppose that g =
∑n

i=s cix
i ∈ annR0[x](ax + xk) ∩ annR0[x](bx)

and cs ̸= 0. Then g ◦ (ax + xk) = 0 and either g ◦ bx = 0 or bx ◦ g = 0. Hence
ci ∈ Nil(R) for each i and acs = 0. If g ◦ bx = 0, then bcs = 0, which implies that
cs ∈ annR

(
{a, b}

)
∩Nil(R), a contradiction. If 0 = bx ◦ g = csb

sxs + · · ·+ cnb
nxn,

then csb
s = 0. Since b /∈ Nil(R), then bs ̸= 0. Hence cs ∈ annR

(
{a, bs}

)
∩Nil(R),

which is a contradiction by Lemma 2.12. Thus bx and ax + xk have not common
non-zero annihilator, and so d([ax+xk], [bx]) ≥ 3. Therefore diam

(
ΓE(R0[x])

)
= 3.

Now assume for each c′ ∈ Nil(R), c′a ̸= 0 ̸= c′b. Since R is not reduced,
there exists c ∈ R such that c2 = 0. Thus cb ̸= 0 and cbx + x2 ∈ Z

(
R0[x]

)
.

Hence [cbx + x2] ̸= [ax], since cx ∈ annR0[x](cbx + x2) \ annR0[x](ax). Obviously,
(cbx+ x2) ◦ ax ̸= 0 ̸= ax ◦ (cbx+ x2). By Lemma 2.5, we have
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annR0[x](cbx+ x2) = ℓ.annR0[x](cbx+ x2) ⊆ Nil(R0[x]).

Let g =
∑n

i=s cix
i ∈ annR0[x](cbx + x2) ∩ annR0[x](ax) and cs ̸= 0. Hence either

g ◦ ax = 0 or ax ◦ g = 0. If g ◦ ax = 0, then acs = 0, which is a contradiction.
If ax ◦ g = 0, then csa

s = 0. Since as ̸= 0, there exists 1 ≤ t ≤ s − 1 such that
csa

t ̸= 0 but csa
t+1 = 0. Hence csa

t ∈ annR(a) ∩Nil(R), which is a contradiction.
Therefore d([cbx+ x2], [ax]) ≥ 3, and so diam

(
ΓE(R0[x])

)
= 3.

Case 2. Let a ∈ Nil(R), b /∈ Nil(R) and ab ̸= 0. Hence there exists a positive
integer k such that ak = 0 but ak−1 ̸= 0. Thus ak−1x + xk, bx ∈ Z

(
R0[x]

)
. Since

ax ∈ annR0[x](a
k−1x + xk) \ annR0[x](bx), then [bx] ̸= [ak−1x + xk]. Moreover,

bx ◦ (ak−1x+ xk) ̸= 0 ̸= (ak−1x+ xk) ◦ bx. Let

g ∈ annR0[x](a
k−1x+ xk) ∩ annR0[x](bx).

Hence g =
∑n

i=s cix
i with cs ̸= 0 is nilpotent, since

annR0[x](a
k−1x+ xk) = ℓ.annR0[x](a

k−1x+ xk) ⊆ Nil(R0[x]).

From g ◦ (ak−1x+xk) = 0 yields ak−1cs = 0. On the other hand, if g ◦ bx = 0, then
bcs = 0. Therefore 0 ̸= cs ∈ annR

(
{ak−1, b}

)
∩ Nil(R), which is a contradiction

by Lemma 2.12. Now assume that bx ◦ g = 0. Then csb
s = 0. Since b /∈ Nil(R),

then bs ̸= 0. Thus 0 ̸= cs ∈ annR

(
{ak−1, bs}

)
∩Nil(R), which is a contradiction by

Lemma 2.12. Hence d([ak−1x+ xk], [bx]) ≥ 3, and so the result follows.
Case 3. Let a, b ∈ Nil(R) and ab ̸= 0. Then there exist positive integers t, k

such that ak = bt = 0 but ak−1 ̸= 0 ̸= bt−1. Therefore

ak−1x+ xk, bt−1x+ xt ∈ Z
(
R0[x]

)
.

Notice that (ak−1x+xk)◦ (bt−1x+xt) ̸= 0 ̸= (bt−1x+xt)◦ (ak−1x+xk). Moreover,

annR0[x](a
k−1x+ xk) = ℓ.annR0[x](a

k−1x+ xk) ⊆ Nil(R0[x])

and annR0[x](b
t−1x+xt) = ℓ.annR0[x](b

t−1x+xt). Also, if ax ∈ annR0[x](b
t−1x+xt),

then ax ◦ (bt−1x + xt) = 0, and so a ∈ annR

(
{ak−1, bt−1}

)
∩ Nil(R), which is a

contradiction by Lemma 2.12. Hence

ax ∈ annR0[x](a
k−1x+ xk) \ annR0[x](b

t−1x+ xt),

and so [ak−1x+ xk] ̸= [bt−1x+ xt]. Let

g =
∑n

i=s cix
i ∈ annR0[x](a

k−1x+ xk) ∩ annR0[x](b
t−1x+ xt), cs ̸= 0.

Hence g ◦ (ak−1x+ xk) = 0 = g ◦ (bt−1x+ xt). Therefore

0 ̸= cs ∈ annR

(
{ak−1, bt−1}

)
∩Nil(R),
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which is a contradiction by Lemma 2.12. Hence d([ak−1x + xk], [bt−1x + xt]) ≥ 3,
as wanted.

(⇐) Let diam
(
ΓE(R0[x])

)
= 3. Since diam

(
ΓE(R0[x])

)
≤ diam

(
Γ(R0[x])

)
≤ 3,

then the result follows. 2

By using Theorems 2.9 and 2.13, we can determine when diam
(
ΓE(R0[x])

)
= 2.

Theorem 2.14. Let R be a non-reduced commutative ring with Z(R) ̸= 0. Then
diam

(
ΓE(R0[x])

)
= 2 if and only if annR

(
{a, b}

)
∩Nil(R) ̸= 0 for each a, b ∈ Z(R)

and one of the following conditions holds:

(1) | ΓE(R) |≥ 3.

(2) Z(R) ̸= annR(c) for each c ∈ R.

(3) Nil(R)2 ̸= 0.

(4) There exists 0 ̸= c ∈ Z(R) \Nil(R) such that annR(c) ̸= Nil(R).

Proof. (⇒) By Theorem 2.13, we have diam
(
Γ(R0[x])

)
= 2. It follows that

annR

(
{a, b}

)
∩ Nil(R) ̸= 0 for each a, b ∈ Z(R), by [1, Theorem 2.9], Since

diam
(
ΓE(R0[x])

)
= 2, then the result follows from Theorem 2.9.

(⇐) Since annR

(
{a, b}

)
∩ Nil(R) ̸= 0 for each a, b ∈ Z(R), we have

diam
(
Γ(R0[x])

)
= 2, by [1, Theorem 2.9]. Hence diam

(
ΓE(R0[x])

)
∈ {1, 2}, since

diam
(
ΓE(R0[x])

)
≤ diam

(
Γ(R0[x])

)
. On the other hand, if one of the conditions

(1) − (4) holds, then diam
(
ΓE(R0[x])

)
̸= 1, by Theorem 2.9, and so the result

follows. 2

3. On the Diameter of the Compressed Zero-divisor Graph of R0[[x]]

We denote the collection of all power series with positive orders using the
operations of addition and substitution by R0[[x]], unless specifically indicated
otherwise (i.e., R0[[x]] denotes (R0[[x]],+, ◦)). Observe that the system
(R0[[x]],+, ◦) is a zero-symmetric left near-ring. For any f ∈ R0[[x]], we denote
by Cf the set of all coefficients of f . Also, the set of all non-zero coefficients of f is
denoted by C∗

f = Cf \ {0}.
In this section, we characterize the diameter of the compressed zero-divisor

graph of the near-ring R0[[x]].

Lemma 3.1. Let R be a reduced ring. Then

(1) [13, Proposition 2.3] For each f, g ∈ R[[x]], fg = 0 if and only if aibj = 0 for
each ai ∈ Cf and bj ∈ Cg.

(2) [6, Lemma 3.3] For each f, g ∈ R0[[x]], f ◦ g = 0 if and only if aibj = 0 for
each ai ∈ Cf and bj ∈ Cg.

By using Lemma 3.1 and a similar argument as used in the proof of Proposition
2.3, we can conclude the following nice fact.

Proposition 3.2. Let R be a reduced ring. Then
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(1) diam
(
ΓE(R[[x]])

)
= 1 if and only if diam

(
ΓE(R0[[x]])

)
= 1.

(2) diam
(
ΓE(R[[x]])

)
= 2 if and only if diam

(
ΓE(R0[[x]])

)
= 2.

(3) diam
(
ΓE(R[[x]])

)
= 3 if and only if diam

(
ΓE(R0[[x]])

)
= 3.

Let R be a commutative ring. For polynomials, McCoy’s Theorem [19, Theorem
2] states that a polynomial f ∈ R[x] is a zero-divisor if and only if there is a
non-zero element r ∈ R such that rf = 0. Based on this theorem, a ring R is said
to be McCoy ring if each finitely generated ideal contained in Z(R) has a non-zero
annihilator [9].

Corollary 3.3. Let R be a reduced commutative ring. Then diam
(
Γ(R0[[x]])

)
= 3

if and only if diam
(
ΓE(R[[x]])

)
= 3.

Proof. (⇒) Let diam
(
Γ(R0[[x]])

)
= 3. Then diam

(
Γ(R[[x]])

)
= 3, by Lemma 3.1.

Thus by [17, Theorem 4.9], one of the following cases occurs:
Case 1. R is a McCoy ring with Z(R) an ideal but there exist countably

generated ideals I and J with non-zero annihilators such that I + J does not have
a non-zero annihilator. Since Z(R) is an ideal, then R has more than two minimal
primes. Therefore diam

(
ΓE(R[[x]])

)
= 3, by [12, Theorem 4.3].

Case 2. Z(R) is an ideal and each two generated ideal contained in Z(R) has a
non-zero annihilator but R is not a McCoy ring. Then R has more than two minimal
primes and there exists K = ⟨a1, . . . , an⟩ ⊆ Z(R) with annR(K) = 0, since R is
not McCoy. Hence n ≥ 3. Therefore one can easily show that there exist finitely
generated ideals I and J with non-zero annihilators such that I + J does not have
a non-zero annihilator. Hence diam

(
ΓE(R[[x]])

)
= 3, by [12, Theorem 4.3].

Case 3. R has more than two minimal primes and there is a pair of
zero-divisors a and b such that ⟨a⟩ + ⟨b⟩ = ⟨a, b⟩ does not have a non-zero
annihilator. Then diam

(
ΓE(R[[x]])

)
= 3, by [12, Theorem 4.3].

Therefore diam
(
ΓE(R0[[x]])

)
= 3, by Proposition 3.2.

The backward direction is clear. 2

Corollary 3.4. Let R be a reduced commutative ring. If diam
(
ΓE(R0[x])

)
= 3,

then diam
(
ΓE(R0[[x]])

)
= 3.

Proof. Let diam
(
ΓE(R0[x])

)
= 3. Then diam

(
Γ(R0[x])

)
= 3, by Corollary 2.4.

Thus diam
(
Γ(R[x])

)
= 3, by [1, Proposition 2.10], and so diam

(
Γ(R[[x]])

)
= 3,

by [17, Theorem 4.9]. Hence diam
(
Γ(R0[[x]])

)
= 3, by Lemma 3.1. Therefore the

result follows from Corollary 3.3. 2

Proposition 3.5. Let R be a reduced commutative ring. Then

diam
(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
.

Proof. Clearly, if diam
(
ΓE(R)

)
= 0, then we have diam

(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
.

Also, diam
(
ΓE(R)

)
= 1 if and only if diam

(
ΓE(R[x])

)
= 1 if and only if

diam
(
ΓE(R0[x])

)
= 1, by [12, Theorem 3.3] and Proposition 2.3. Therefore if
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diam
(
ΓE(R)

)
= 2, then diam

(
ΓE(R0[x])

)
≥ 2. Finally, if diam

(
ΓE(R)

)
= 3,

then diam
(
ΓE(R[x])

)
= 3, by [12, Theorem 4.4]. Hence diam

(
ΓE(R0[x])

)
= 3, by

Proposition 2.3.
Obviously, diam

(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
, if diam

(
ΓE(R0[x])

)
= 1.

Now assume that diam
(
ΓE(R0[x])

)
= 2. Then there exist f, g ∈ Z

(
R0[x]

)
with

d([f ]R0[x], [g]R0[x]) = 2. On the contrary, suppose that diam
(
ΓE(R0[[x]])

)
= 1.

Since d([f ]R0[x], [g]R0[x]) = 2, we have f ◦ g ̸= 0. Therefore [f ]R0[[x]] = [g]R0[[x]],
which implies that [f ]R0[x] = R0[x] ∩ [f ]R0[[x]] = R0[x] ∩ [g]R0[[x]] = [g]R0[x], a

contradiction. Hence diam
(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
, by Corollary 3.4. 2

The following lemmas play an important role in proving Theorem 3.10.

Lemma 3.6. ([10, Corollary 1]) Let R be a commutative Noetherian ring. Then
Nil

(
R[[x]]

)
= Nil(R)[[x]].

For each f ∈ R0[x] and positive integer n, we write

f (n) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

Lemma 3.7. Let R be a commutative Noetherian ring. Then

Nil
(
R0[[x]]

)
= Nil(R)0[[x]].

Proof. First, Suppose that f =
∑∞

r=1 arx
r ∈ Nil

(
R0[[x]]

)
. Then there exists a

positive integer n such that f (n) = 0. We show that for each ai1 , ai2 , . . . , ain ∈ Cf ,
we have ai1ai2 · · · ain ∈ Nil(R), which implies that ar ∈ Nil(R) for each ar ∈ Cf ,
as wanted. We use induction on n. Assume that n = 2 and R = R/Nil(R). Since
0 = f ◦f ∈ Nil(R)0[[x]], then f ◦f = 0 in R0[[x]]. By Lemma 3.1, we have aiaj = 0
for each ai, aj ∈ Cf , since R is a reduced ring. Thus aiaj ∈ Nil(R) for each i, j.

Now suppose that n > 2. Let g = f (n−1). Thus f ◦ g ∈ Nil(R)0[[x]]. By a similar
argument as used above, we have arag ∈ Nil(R), where ag ∈ Cg and ar ∈ Cf .
Therefore for each ai1 ∈ Cf ,

g ◦ ai1x = f (n−1) ◦ ai1x = f (n−2) ◦ (f ◦ ai1x) = f (n−2) ◦ (ai1f) ∈ Nil(R)0[[x]].

By induction, we have ai2ai3 · · · ai1ain ∈ Nil(R), where aij ∈ Cf for each j and the
coefficients of ai1f are ai1ain . Therefore ar ∈ Nil(R) for each ar ∈ Cf .

Now assume that f ∈ Nil(R)0[[x]]. Since R is Noetherian, there exists a positive
integer k such that Nil(R)k = 0. It follows that Ck

f = 0. Since for each n ≥ 1, the

coefficient of xn in f (k) is a sum of such elements ai1ai2 · · · ail , where aij ∈ Cf and

l ≥ k, then we have f (k) = 0. Hence f ∈ Nil
(
R0[[x]]). 2

Lemma 3.8. Let R be a commutative ring. If f =
∑∞

i=1 aix
i is a zero-divisor of

R0[[x]], then a1 ∈ Z(R).

Proof. Let a1 ̸= 0. Since f ∈ Z(R0[[x]]), then there exists g =
∑∞

i=1 bix
i ∈ R0[[x]]
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such that f ◦g = 0 or g ◦f = 0. Let bk be the first non-zero coefficient of g. Assume
that f ◦ g = 0. Then bka

k
1 = 0. Hence there exists 1 ≤ t ≤ k− 1 such that bka

t
1 ̸= 0

but bka
t+1
1 = 0, which implies that a1 ∈ Z(R). On the other hand, if g ◦ f = 0,

then a1bk = 0, and so the result follows. 2

Lemma 3.9. Let R be a Noetherian commutative ring and f =
∑∞

i=1 aix
i and

g =
∑∞

j=1 bjx
j be non-zero elements of the near-ring R0[[x]]. If f ◦ g = 0, then

(1) rf = 0 for some non-zero r ∈ R.

(2) f is nilpotent or sg = 0 for some non-zero s ∈ R.

Proof. (1) Let bk be the first non-zero coefficient of g. Since f ◦ g = 0, we have
bkf

k + bk+1f
k+1 + · · · = 0. Hence

(
bk + bk+1f + · · ·

)
fk = 0. If fk = 0, then there

exists 1 ≤ t ≤ k− 1 such that f t ̸= 0 = f t+1. Therefore rf = 0 for some 0 ̸= r ∈ R,
by McCoy’s Theorem. Thus assume that fk ̸= 0. Since 0 ̸= bk + bk+1f + · · · , then
the result follows by McCoy’s Theorem.

(2) Notice that ⟨Cg⟩ = ⟨b1, . . . , bn⟩ for some n ≥ 1, since R is Noetherian.
Suppose that f is not nilpotent. Thus there exists a = ai such that a /∈ Nil(R), by
Lemma 3.6. Let R = R/Nil(R). Since f ◦ g = 0, then f ◦ g = 0 in the near-ring
R0[[x]]. Since R is a reduced ring, it follows that aibj = 0, by Lemma 3.1. Since R is
Noetherian, then Nil(R) is nilpotent, and so Nil(R)k = 0 for some positive integer
k. Thus akbkj = 0 for each j ≥ 1. Hence there exist integers 0 ≤ tj ≤ k such that

akb
tj
j ̸= 0 but akb

tj+1
j = 0 for each j ≥ 1. Therefore there exist integers 0 ≤ sj ≤ tj

such that akbs11 bs22 · · · bsnn ̸= 0 but akbs11 bs22 · · · bsnn bj = 0 for each 1 ≤ j ≤ n. Let
s = akbs11 bs22 · · · bsnn . Thus sg = 0, since ⟨Cg⟩ = ⟨b1, . . . , bn⟩. 2

Theorem 3.10. Let R be a non-reduced commutative ring. Then

(1) If R is Noetherian and diam
(
ΓE(R0[x])

)
= 1, then diam

(
ΓE(R0[[x]])

)
= 1.

(2) If diam
(
ΓE(R0[[x]])

)
= 1, then diam

(
ΓE(R0[x])

)
= 1.

Proof. (1) Let diam
(
ΓE(R0[x])

)
= 1. Then |ΓE(R)| ≤ 2, Z(R) = annR(a) for

some a ∈ R, Nil(R)2 = 0, and annR(c) = Nil(R) for each c ∈ Z(R) \ Nil(R),
by Theorem 2.9. As shown in the proof of Theorem 2.9, for each c ∈ Nil(R),
annR(c) = Z(R). Assume c ∈ Nil(R) and g =

∑∞
j=1 bjx

j ∈ Z
(
R0[[x]]

)
. Since

Nil(R)2 = 0, then cx ◦ g = 0, by Lemma 3.8. Thus annR0[[x]](cx) = Z
(
R0[[x]]

)
.

It is clear that r.annR0[[x]](x
2) = 0. Also, we have ℓ.annR0[[x]](x

2) ⊆ Nil(R)0[[x]],

by Lemmas 3.7 and 3.9. Hence annR0[[x]](x
2) = ℓ.annR0[[x]](x

2) = Nil
(
R0[[x]]

)
,

since Nil(R)2 = 0 and Nil
(
R0[[x]]

)
= Nil(R)0[[x]]. Notice that [cx] ̸= [x2],

since x2 ∈ annR0[[x]](cx) \ annR0[[x]](x
2). Now suppose that f be a non-zero

element of Z
(
R0[[x]]

)
. We can write f = f1 + f2 + f3 such that C∗

f1
⊆ Nil(R),

C∗
f2

⊆ Z(R) \Nil(R), and C∗
f3

⊆ R \ Z(R).

Assume f = f1 =
∑∞

i=1 aix
i and g =

∑∞
j=1 bjx

j ∈ Z
(
R0[[x]]

)
. Hence we have

annR(ai) = Z(R) for each ai ∈ C∗
f , since C∗

f ⊆ Nil(R). Thus f ◦ g = 0, since
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Nil(R)2 = 0 and b1 ∈ Z(R), by Lemma 3.8. Therefore annR0[[x]](f) = Z
(
R0[[x]]

)
,

which implies that [f ] = [cx].
Suppose that f = f2 =

∑∞
i=q aix

i and aq ̸= 0. Since C∗
f ⊆ Z(R) \Nil(R), then

annR(ai) = Nil(R) for each ai ∈ C∗
f . Hence for each g ∈ Nil(R)0[[x]], f ◦ g = 0

and g ◦ f = 0. Let g =
∑∞

j=1 bjx
j ∈ r.annR0[[x]](f). Thus f ◦ g =

∑∞
j=1 bjf

j = 0.

Assume that bt is the first non-zero coefficient of g. Then bt ∈ annR(a
t
q) = Nil(R),

since bta
t
q = 0 and atq /∈ Nil(R). Hence btf = 0, and so f ◦ g =

∑∞
j=t+1 bjf

j = 0.
By repeating this argument, one can deduce that bj ∈ Nil(R) for each bj ∈ C∗

g .
Thus g ∈ Nil(R)0[[x]], and so r.annR0[[x]](f) = Nil(R)0[[x]].

Now suppose that g =
∑∞

j=t bjx
j ∈ ℓ.annR0[[x]](f), where bt ̸= 0. Therefore

g ◦ f =
∑∞

i=q aig
i = 0,

which implies that aqb
q
t = 0. Hence bqt ∈ annR(aq) = Nil(R), and so bt ∈ Nil(R).

Then btai = 0 for each ai ∈ C∗
f , and thus g ◦ f =

∑∞
i=q aig

i
1 = 0, where

g1 =
∑∞

j=t+1 bjx
j . Continuing this process one can show that bj ∈ Nil(R) for each

bj ∈ C∗
g , and so ℓ.annR0[[x]](f) ⊆ Nil(R)0[[x]]. Hence annR0[[x]](f) = Nil(R)0[[x]].

Therefore [f ] = [f2] = [x2].
If f = f3 or f = f1 + f2 (f1 ̸= 0 ̸= f2) or f = f1 + f3 (f1 ̸= 0 ̸= f3) or

f = f2 + f3 (f2 ̸= 0 ̸= f3) or f = f1 + f2 + f3 (each fi be non-zero), then by
using Lemmas 3.7, 3.9 and a similar argument as used in the proof of Theorem 2.9,
one can show that [f ] = [x2] = Nil(R)0[[x]]. Hence |ΓE(R0[[x]])| = 2, and thus
diam

(
ΓE(R0[[x]])

)
= 1.

(2) It is clear. 2

Proposition 3.11. Let R be a non-reduced commutative ring. Then

(1) If diam
(
Γ(R0[[x]])

)
= 3, then annR

(
{a, b}

)
∩ Nil(R) = 0 for some

a, b ∈ Z(R).

(2) Let R be a Noetherian ring. If annR

(
{a, b}

)
∩ Nil(R) = 0 for some

a, b ∈ Z(R), then diam
(
Γ(R0[[x]])

)
= 3.

Proof. (1) Since diam
(
Γ(R0[[x]])

)
= 3, then there exist f, g ∈ R0[[x]] such that

d(f, g) = 3. Let at and bq be the first non-zero coefficients of f and g, respectively.
On the contrary, suppose that annR

(
{a, b}

)
∩ Nil(R) ̸= 0 for each a, b ∈ Z(R).

By Lemma 3.8, we have at, bq ∈ Z(R). Hence there exists c ∈ Nil(R) such that
cat = bqc = 0. Let cr = 0 ̸= cr−1 for some positive integer r. Therefore f−cr−1x−g
is a path in Γ(R0[[x]]), which is a contradiction.

(2) Since R is non-reduced, there exists c ∈ R such that c2 = 0. It follows
that x2, x3 ∈ Z(R0[[x]]) and x2 ◦ x3 ̸= 0 ̸= x3 ◦ x2. Thus d(x2, x3) ≥ 2, and
so diam

(
Γ(R0[[x]])

)
≥ 2. On the contrary, suppose that diam

(
Γ(R0[[x]])

)
̸= 3.

Therefore diam
(
Γ(R0[[x]])

)
= 2, by [8, Theorem 2.2]. Let a, b ∈ Z(R). We show

that ax+x2, bx+x2 ∈ Z(R0[[x]]). If a
k−1 ̸= 0 = ak for some positive integer k, then

ak−1x◦ (ax+x2) = 0. Thus assume that a /∈ Nil(R). Since ax, x2 ∈ Z(R0[[x]]) and
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ax ◦ x2 ̸= 0 ̸= x2 ◦ ax, then there exists a non-zero nilpotent element f =
∑∞

i=r cix
i

with cr ̸= 0 such that ax − f − x2 is a path. If f ◦ ax = 0, then acr = 0.
By Lemma 3.6, we have ck−1

r ̸= 0 = ckr for some positive integer k. Therefore
ck−1
r x ◦ (ax+x2) = 0. If ax ◦ f = 0, then cra

r = 0. Hence there exists 1 ≤ t ≤ r− 1
such that cra

t ̸= 0 = cra
t+1, and so cra

tx ◦ (ax + x2) = 0. Similarly, we have
bx+ x2 ∈ Z(R0[[x]]). Since diam

(
Γ(R0[[x]])

)
= 2 and

(ax+ x2) ◦ (bx+ x2) ̸= 0 ̸= (bx+ x2) ◦ (ax+ x2),

then g◦(ax+x2) = 0 = g◦(bx+x2) for some non-zero nilpotent element g, by Lemma
3.9. Let s be the first non-zero coefficient of g. Therefore s ∈ annR({a, b})∩Nil(R),
which is a contradiction. 2

Corollary 3.12. Let R be a non-reduced commutative ring. Then

(1) If R is Noetherian and diam
(
Γ(R0[x])

)
= 3, then diam

(
Γ(R0[[x]])

)
= 3.

(2) If diam
(
Γ(R0[[x]])

)
= 3, then diam

(
Γ(R0[x])

)
= 3.

Proof. It follows from Propositions 2.11 and 3.11. 2

Theorem 3.13. Let R be a non-reduced commutative ring. Then

(1) If R is Noetherian and diam
(
Γ(R0[[x]])

)
= 3, then diam

(
ΓE(R0[[x]])

)
= 3.

(2) If diam
(
ΓE(R0[[x]])

)
= 3, then diam

(
Γ(R0[[x]])

)
= 3.

Proof. (1) By using Lemmas 3.7, 3.9, Proposition 3.11 and a similar argument as
used in the proof of Theorem 2.13, one can prove it.

(2) It is clear. 2

Corollary 3.14. Let R be a non-reduced commutative ring. Then

(1) If R is Noetherian and diam
(
ΓE(R0[x])

)
= 3, then diam

(
ΓE(R0[[x]])

)
= 3.

(2) If diam
(
ΓE(R0[[x]])

)
= 3, then diam

(
ΓE(R0[x])

)
= 3.

Proof. It follows from Theorems 2.13, 3.13 and Corollary 3.12. 2

Proposition 3.15. Let R be a non-reduced commutative ring. Then

(1) If diam
(
ΓE(R0[x])

)
= 2, then diam

(
ΓE(R0[[x]])

)
= 2.

(2) If R is Noetherian and diam
(
ΓE(R0[[x]])

)
= 2, then diam

(
ΓE(R0[x])

)
= 2

Proof. This follows from Theorem 3.10 and Corollary 3.14. 2

Proposition 3.16. Let R be a non-reduced Noetherian commutative ring. If
Z(R) ̸= annR(a) for each a ∈ R, then

diam
(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
.
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Proof. Clearly, diam
(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
, if diam

(
ΓE(R)

)
∈ {0, 1}.

Hence suppose that diam
(
ΓE(R)

)
= 2. Then | ΓE(R)

)
|≥ 3, which implies that

diam
(
ΓE(R0[x])

)
≥ 2, by Theorem 2.9.

Now assume that diam
(
ΓE(R)

)
= 3. Notice that diam

(
ΓE(R0[x])

)
≥ 2, by

Theorem 2.9. On the contrary, suppose that diam
(
ΓE(R0[x])

)
= 2. Thus Z(R)

is an ideal and each pair of zero-divisors has a non-zero annihilator, by Theorem
2.14. Since Z(R) ̸= annR(a) for every a ∈ Z(R), then diam

(
ΓE(R)

)
= 2, by [12,

Theorem 2.3], which is a contradiction. Hence diam
(
ΓE(R)

)
≤ diam

(
ΓE(R0[x])

)
.

Also, by Corollary 3.14 and Proposition 3.15, we have

diam
(
ΓE(R0[x])

)
≤ diam

(
ΓE(R0[[x]])

)
.

2
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