• 제목/요약/키워드: diameter of a graph

검색결과 78건 처리시간 0.023초

행렬 하이퍼큐브 그래프 : 병렬 컴퓨터를 위한 새로운 상호 연결망 (Matrix Hypercube Graphs : A New Interconnection Network for Parallel Computer)

  • 최선아;이형옥임형석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.293-296
    • /
    • 1998
  • In this paper, we propose a matrix hypercube graph as a new topology for parallel computer and analyze its characteristics of the network parameters, such as degree, routing and diameter. N-dimensional matrix hypercube graph MH(2,n) contains 22n vertices and has relatively lower degree and smaller diameter than well-known hypercube graph. The matrix hypercube graph MH(2,n) and the hypercube graph Q2n have the same number of vertices. In terms of the network cost, defined as the product of the degree and diameter, the former has n2 while the latter has 4n2. In other words, it means that matrix hypercube graph MH(2,n) is better than hypercube graph Q2n with respect to the network cost.

  • PDF

THE COMPETITION NUMBERS OF HAMMING GRAPHS WITH DIAMETER AT MOST THREE

  • Park, Bo-Ram;Sano, Yoshio
    • 대한수학회지
    • /
    • 제48권4호
    • /
    • pp.691-702
    • /
    • 2011
  • The competition graph of a digraph D is a graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of important research problems in the study of competition graphs. In this paper, we compute the competition numbers of Hamming graphs with diameter at most three.

COVERING COVER PEBBLING NUMBER OF A HYPERCUBE & DIAMETER d GRAPHS

  • Lourdusamy, A.;Tharani, A. Punitha
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권2호
    • /
    • pp.121-134
    • /
    • 2008
  • A pebbling step on a graph consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. The covering cover pebbling number of a graph is the smallest number of pebbles, such that, however the pebbles are initially placed on the vertices of the graph, after a sequence of pebbling moves, the set of vertices with pebbles forms a covering of G. In this paper we find the covering cover pebbling number of n-cube and diameter two graphs. Finally we give an upperbound for the covering cover pebbling number of graphs of diameter d.

  • PDF

A Relationship between the Second Largest Eigenvalue and Local Valency of an Edge-regular Graph

  • Park, Jongyook
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.671-677
    • /
    • 2021
  • For a distance-regular graph with valency k, second largest eigenvalue r and diameter D, it is known that r ≥ $min\{\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2},\;a_3\}$ if D = 3 and r ≥ $\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2}$ if D ≥ 4, where λ = a1. This result can be generalized to the class of edge-regular graphs. For an edge-regular graph with parameters (v, k, λ) and diameter D ≥ 4, we compare $\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2}$ with the local valency λ to find a relationship between the second largest eigenvalue and the local valency. For an edge-regular graph with diameter 3, we look at the number $\frac{{\lambda}-\bar{\mu}+\sqrt{({\lambda}-\bar{\mu})^2+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-{\lambda})}{v-k-1}$, and compare this number with the local valency λ to give a relationship between the second largest eigenvalue and the local valency. Also, we apply these relationships to distance-regular graphs.

새로운 상호연결망 하프 버블정렬 그래프 설계 및 성질 분석 (Design and feature analysis of a new interconnection network : Half Bubblesort Graph)

  • 서정현;심현;이형옥
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1327-1334
    • /
    • 2017
  • 버블정렬 그래프는 노드 대칭이며 데이터 정렬 알고리즘에 활용 할 수 있다. 본 연구에서는 버블정렬 그래프의 망 비용을 개선한 하프 버블정렬 그래프를 제안하고 분석한다. 하프 버블정렬 그래프 $HB_n$의 노드수는 n!이고 분지수는 ${\lfloor}n/2{\rfloor}+1$이다. 하프 버블정렬 그래프의 분지수는 버블정렬 그래프의 분지수의 $${\sim_=}0.5$$배 이고, 지름은 $${\sim_=}0.9$$배 이다. 버블정렬 그래프의 망 비용은 $${\sim_=}0.5n^3$$이고, 하프 버블정렬 그래프의 망 비용은 $${\sim_=}0.2n^3$$이다. 하프 버블정렬 그래프는 버블정렬 그래프의 서브 그래프임을 증명하였다. 추가로 라우팅 알고리즘을 제안하였고 지름을 분석하였다. 마지막으로 버블정렬 그래프와 망 비용을 비교 하였다.

On the Diameter, Girth and Coloring of the Strong Zero-Divisor Graph of Near-rings

  • Das, Prohelika
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1103-1113
    • /
    • 2016
  • In this paper, we study a directed simple graph ${\Gamma}_S(N)$ for a near-ring N, where the set $V^*(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I,J{\in}V^*(N)$, I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph ${\Gamma}_S(N)$. Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph ${\Gamma}_S(N)$.

An Ideal-based Extended Zero-divisor Graph on Rings

  • Ashraf, Mohammad;Kumar, Mohit
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.595-613
    • /
    • 2022
  • Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph 𝚪'I (R) and prove that 𝚪'I (R) is connected with diameter at most two and if 𝚪'I (R) contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph 𝚪'I (R) and the ideal-based zero-divisor graph 𝚪I (R) associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor graph 𝚪'I (R) is identical to the ideal-based zero-divisor graph 𝚪I (R) if and only if R has exactly two minimal prime-ideals which contain I.

DIAMETER OF THE DIRECT PRODUCT OF WIELANDT GRAPH

  • Kim, Sooyeon;Song, Byung Chul
    • Korean Journal of Mathematics
    • /
    • 제20권4호
    • /
    • pp.395-402
    • /
    • 2012
  • A digraph D is primitive if there is a positive integer $k$ such that there is a walk of length $k$ between arbitrary two vertices of D. The exponent of a primitive digraph is the least such $k$. Wielandt graph $W_n$ of order $n$ is known as the digraph whose exponent is $n^2-2n+2$, which is the maximum of all the exponents of the primitive digraphs of order n. It is known that the diameter of the multiple direct product of a digraph $W_n$ strictly increases according to the multiplicity of the product. And it stops when it attains to the exponent of $W_n$. In this paper, we find the diameter of the direct product of Wielandt graphs.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

거리공간속 경로 그래프에 간선추가를 통한 지름의 최소화 (Minimizing the Diameter by Augmenting an Edge to a Path in a Metric Space)

  • 김재훈
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.128-133
    • /
    • 2022
  • 본 논문은 거리 공간(metric space) 속에 포함된 그래프에서 각 간선의 가중치가 거리 공간 상의 두 끝 정점간의 거리로 주어지는 그래프를 다룬다. 특별히 우리는 이러한 그래프 중 n개 정점을 가진 경로 P에 관해서 연구한다. 우리는 경로 P에 하나의 간선을 추가해서 새로운 그래프 $\bar{P}$ 얻을 수 있다. 그러면 그래프 $\bar{P}$의 두 정점 사이의 최단 경로의 길이를 생각하고 이 길이들 중 최댓값에 주목한다. 이 최댓값을 그래프 $\bar{P}$의 지름(diameter)라고 부른다. 우리는 그래프 $\bar{P}$의 지름이 최소가 되도록 추가하는 간선을 찾고 싶다. 특별히 임의의 실수 λ > 0에 대해서, $\bar{P}$의 지름이 λ 이하가 되는 추가 간선이 존재하는지 여부를 결정하는 문제에 대해 O(n)시간 알고리즘을 제안한다. 이것은 이전 알려진 시간복잡도 O(nlogn)을 개선한다. 이 결정 알고리즘을 이용해서 주어진 경로 P의 길이 D에 대해서, $\bar{P}$의 지름의 최솟값을 찾는 O(nlogD) 시간 알고리즘을 제안한다